
Optimizing Consensus Algorithms
for Permissoned Blockchains

Gengrui (Edward) Zhang and Hans-Arno Jacobsen

Toronto Blockchain Week

• What is a consensus algorithm?

• Commonly used approaches
ü Proof-of-Work (PoW)
ü PBFT
ü Paxos and Raft

• Overview of our approach
• PoCRaft: PoW + Raft

Outline

Optimizing Consensus Algorithms for Permissoned Blockchains 2 / 15 April 2019

What is a consensus algorithm?

• From undecided state to decided state
• Propose
• Communicate
• Decide

• Handle failures

• Fail-stop failures (FS)

• Crash failures (CF)

• Byzantine failures (BF)

1

3

2

Consensus

algorithms

p1: !(#)

p2: !(%)

p3: !(&)

d1: !(#)

d2: !(#)

d3: !(#) Crash

Optimizing Consensus Algorithms for Permissoned Blockchains 3 / 15 April 2019

Proof-of-Work(PoW) in Permissionless Blockchains (Bitcoin)

1

2

3

4

5

K101

K101

K101

Nonce:
Qs5A…XXX

K101

K101

Block …
Block #100

Block #101
Pre-Id: 100
Transactions:

txn #...
txn #... +

x&3nFsn#$dsfnjkm,sdf…

Hash block with a noncedo
hash work

until
result meets an
output requirement

Nonce:
XXXXXXXXXXXXX

xxxxxxxxxx…..xxxxxxxxxx0003nFsn#$rG..... XXX

K100
K101

K101

K102

#K101 From
Node 2

K101 From
Node 5

Abandon

Optimizing Consensus Algorithms for Permissoned Blockchains 4 / 15 April 2019

• Longest chain rule
• Open, entirely decentralized
• Good scalability

Nonce:
Prj%ld*…XXX

Limitations of Proof-of-Work

• Limited throughput
• Due to protocol design, e.g., block size, varying proof difficulty

• High latency
• Due to multi-block confirmations

• Wasted power
• Due to redundant hash computation

Optimizing Consensus Algorithms for Permissoned Blockchains 5 / 15 April 2019

Consensus Protocols in Permissioned Blockchains
• System context

• Cooperating participants
• Verified identities

• Fault tolerance
• Non-Byzantine conditions: (Paxos, Raft)

• Crash failures, omission failures such as network delays, partitions, packet loss,
duplication, and reordering

• Byzantine conditions: processes may exhibit arbitrary failures (PBFT)

A B
!

A B
!

crash failures (Node B crashes) omission (packet loss)

A B
! → #$

Byzantine (send a modified value)

Optimizing Consensus Algorithms for Permissoned Blockchains 6 / 15 April 2019

Practical Byzantine Fault Tolerance (PBFT)
• Byzantine broadcast to reach a Byzantine agreement
• Client waits for ! + 1 replies from different replicas with the

same result
• View change (deal with a faulty leader)

!$
!%
!&

request

'()*(+

,-.(/0
pre-prepare prepare commit reply ', !$, !% 2344.0) 5)-6(

= 4)83+.09{5;<= , 5;>=
?, 5@=}

= B

faulty node
honesty node

value 5=
value 5C (faulty)

Optimizing Consensus Algorithms for Permissoned Blockchains 7 / 15 April 2019

• Features
• Compares the received value with others’ value
• Involves ! "# message transmissions
• Requires 3% + 1 nodes to reach Byzantine agreement, where %

represents number of failures that can be tolerated

• PBFT in blockchains
• Hyperledger Fabric, Zilliqa, R3 Corda, Symbiont

Practical Byzantine Fault Tolerance (PBFT)

Optimizing Consensus Algorithms for Permissoned Blockchains 8 / 15 April 2019

Proof-Of-Work BFT-based protocols
Node identity
management Open, entirely decentralized Permissioned, nodes need to know IDs of

all other nodes

Throughput Limited (due to possible forks) Good (tens of thousands of TPS)

Latency High latency
(due to multi-block confirmations)

Excellent
(effected by network latency)

Power consumption Poor (redundant hash computation) Good (no needless computation)

Scalability Excellent (like Bitcoin) Limited (not well explored)

Correctness proofs no yes

Qualitative Comparisons between PoW and BFT

Adapted from: Vukolić, Marko. "The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication." International workshop on open problems in
network security. Springer, Cham, 2015

Optimizing Consensus Algorithms for Permissoned Blockchains 9 / 15 April 2019

Raft

• Features
• Strong leadership in log replication
• New elections when leader crashes
• Involves ! " message transmissions

• Better than PBFT’s ! "#

• Limitations
• Vulnerable to Byzantine faults
• Elections are only initiated by timeouts

2

3

1

4

5

Cj

1 2log
commit

Leader

$%

1 2

$#
log

commit $%

Optimizing Consensus Algorithms for Permissoned Blockchains 10 / 15 April 2019

Our Approach ---- PoCRaft
• Enable BFT in Raft, reduce message transmissions

• Proof-based leader election
• Proof-of-Commit (PoC)
• Byzantine nodes do more hash computation if they continuously start

elections
• Encrypted log replication

• Leader collects signed replies from followers indicating what they have
received

• Ensure log safety even the current leader is faulty
• Fault tolerance

• Requires 3" + 1 nodes to tolerate " Byzantine failures
• Involves % & messages rather than % &' as in PBFT under normal operations

Optimizing Consensus Algorithms for Permissoned Blockchains 11 / 15 April 2019

PoCRaft: Proof-of-Commit Elections

2

3

1

4

5

!"#
$%&

'($): +,'(-): +,.&

ℎ ← 123ℎ(' $: +,)

45:

678 ← 123ℎ(ℎ, :5:;<)
=:>?@:

678 ?3 “000. . D. . D. . D”

67F8 G5H :I = 3

H<L<;> ?G ℎ ≠ ℎNO"

H ← 123ℎ(ℎ, :5:;<)

H<L<;> ?G res(67F8)	≠ r

GRANT	A	VOTE

• Requirement for the hash work
dynamically changes

• Byzantine nodes will do more hash
computations if they continuously
start elections

\]^7 _ `8 7a7bc7^

Optimizing Consensus Algorithms for Permissoned Blockchains 12 / 15 April 2019

PoCRaft: Encrypted Log Replications

2

3

1

4

5

!"#$%&

'($): +,'(-): +,.&

</ℒ(123, 1523, +,, 6ℒ)>Leader sends:

Followers reply: ℛ, = </ℱ9 123, +,, 6ℛ: >

Leader collects: ℝ = ℛ&,… , ℛ$ >?6@A ℝ = ?/2

then leader sends: </ℒ(1ℝ, +,, 6ℒ), ℝ, 6ℒ >

• Followers check signed replies in ℝ to acquire
what other nodes have previously received

• Client waits for ?/2 replies with an identical value
and index {' $: +,} to confirm the proposed value
has been committed

Optimizing Consensus Algorithms for Permissoned Blockchains 13 / 15 April 2019

Conclusions

• Efficient consensus protocols lead to higher throughput and lower
latency blockchains

• State-of-the-art consensus protocols ensure correctness

• Optimizations based on message transmission complexity and
efficient leader election could be considered in the future

Optimizing Consensus Algorithms for Permissoned Blockchains 14 / 15 April 2019

Thank you

Optimizing Consensus Algorithms for Permissoned Blockchains

Gengrui (Edward) Zhang and Hans-Arno Jacobsen
Email: gengrui.zhang@mail.utoronto.ca

