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• What is a consensus algorithm?

• Commonly used approaches
ü Proof-of-Work (PoW)
ü PBFT
ü Paxos and Raft

• Overview of our approach
• PoCRaft: PoW + Raft

Outline
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What is a consensus algorithm?

• From undecided state to decided state
• Propose
• Communicate
• Decide

• Handle failures

• Fail-stop failures (FS)

• Crash failures (CF)

• Byzantine failures (BF)
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Proof-of-Work(PoW) in Permissionless Blockchains (Bitcoin)
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• Longest chain rule
• Open, entirely decentralized
• Good scalability
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Limitations of Proof-of-Work

• Limited throughput 
• Due to protocol design, e.g., block size, varying proof difficulty

• High latency
• Due to multi-block confirmations

• Wasted power
• Due to redundant hash computation
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Consensus Protocols in Permissioned Blockchains
• System context

• Cooperating participants
• Verified identities

• Fault tolerance
• Non-Byzantine conditions: (Paxos, Raft)

• Crash failures, omission failures such as network delays, partitions, packet loss, 
duplication, and reordering 

• Byzantine conditions: processes may exhibit arbitrary failures (PBFT)
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Practical Byzantine Fault Tolerance (PBFT)
• Byzantine broadcast to reach a Byzantine agreement
• Client waits for ! + 1 replies from different replicas with the 

same result
• View change (deal with a faulty leader)
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• Features
• Compares the received value with others’ value
• Involves ! "# message transmissions
• Requires 3% + 1 nodes to reach Byzantine agreement, where %

represents number of failures that can be tolerated

• PBFT in blockchains
• Hyperledger Fabric, Zilliqa, R3 Corda, Symbiont

Practical Byzantine Fault Tolerance (PBFT)
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Proof-Of-Work BFT-based protocols
Node identity 
management Open, entirely decentralized Permissioned, nodes need to know IDs of 

all other nodes

Throughput Limited (due to possible forks) Good (tens of thousands of TPS)

Latency High latency
(due to multi-block confirmations)

Excellent
(effected by network latency)

Power consumption Poor (redundant hash computation) Good (no needless computation)

Scalability Excellent (like Bitcoin) Limited (not well explored)

Correctness proofs no yes

Qualitative Comparisons between PoW and BFT

Adapted from: Vukolić, Marko. "The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication." International workshop on open problems in 
network security. Springer, Cham, 2015
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Raft

• Features
• Strong leadership in log replication
• New elections when leader crashes
• Involves ! " message transmissions

• Better than PBFT’s ! "#

• Limitations
• Vulnerable to Byzantine faults
• Elections are only initiated by timeouts
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Our Approach ---- PoCRaft
• Enable BFT in Raft, reduce message transmissions

• Proof-based leader election
• Proof-of-Commit (PoC)
• Byzantine nodes do more hash computation if they continuously start 

elections
• Encrypted log replication

• Leader collects signed replies from followers indicating what they have 
received

• Ensure log safety even the current leader is faulty
• Fault tolerance

• Requires 3" + 1 nodes to tolerate " Byzantine failures
• Involves % & messages rather than % &' as in PBFT under normal operations
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PoCRaft: Proof-of-Commit Elections
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PoCRaft: Encrypted Log Replications
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Conclusions

• Efficient consensus protocols lead to higher throughput and lower 
latency blockchains

• State-of-the-art consensus protocols ensure correctness

• Optimizations based on message transmission complexity and 
efficient leader election could be considered in the future
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