
Reputation-based Consensus Algorithms:
Binding Efficiency and Robustness

Gengrui (Edward) Zhang, PhD Candidate
Advisor: Hans-Arno Jacobsen

University of Toronto



Consensus algorithms and fault tolerance

• State machine replication (SMR)
• A collection of servers compute identical 

copies of the same state
• Byzantine failures

• Faulty servers can exhibit arbitrary and 
malicious behavior; they can also collude 
to perform attacks

• Faulty behavior can be intentional

𝑆!

𝑆"

𝑆#𝑆$

𝑆%

Values

Total order log

<order, value>
<order, value>

….

The new state of Byzantine faulty servers 
and the content of the messages sent are 

completely unconstrained



How’s Byzantine fault-tolerance doing?

• Explicit faults: detectable behavior
• Stop responding
• Send erroneous messages

• Implicit faults: hard to detect; 
sometimes undetectable

• Manipulate transaction orders
• Democratic ordering: 
• E.g., Pompe [OSDI`21]

• Exploit timer timeouts
• Performance monitor and frequent 

leadership rotation
• E.g., Aardvard [NSDI`08], RBFT [ICDCS`13], 

DiemBFT

𝑆!

𝑆"

𝑆#𝑆$

𝑆%

Tx 1 Tx 2 Tx 3

Transaction batch



Passive leadership rotation

• All servers follow a pre-defined leader 
schedule to rotate leadership

• LeaderID = View mod # of servers
• I.e., leadership is assigned to
𝑆! → 𝑆" → 𝑆#→ 𝑆$ → 𝑆% → 𝑆! → ⋯

• Pros: 
• Simple; easy to understand and 

implement
• Cons:

• Cannot avoid scheduled but 
crashed servers assigned with 
leadership

𝑆!

𝑆"

𝑆#𝑆$

𝑆%

View 1

View 2

View 3



Active vs. passive view changes

Passive Active
Normal operation − −
Crash failures ↓ −
Byzantine failures ↓ ↓↓ (? )

Design goals:
1. Suppress faulty servers to be elected
2. Let attackers pay (misbehavior 

comes at a cost) 

• Active view change 
• No leader schedule
• Whoever detects a leader’s failure 

proactively campaigns for leadership 𝑆!

𝑆"

𝑆#𝑆$

𝑆%

View 1

𝑆$
View 2



Reputation-based BFT consensus algorithms

• Extending state machine 
replication properties to a 
reputation state

• A server’s reputation state is 
indictive of the server’s 
correctness, i.e., being correct 
or malicious

• The reputation state is 
calculated based on servers’ 
past behavior



Reputation-determined state transition

Worker Starlet Nominee Leader

Reputation 
engine

Server 
behavior 
history

Reputation 
penalty (e.g., 4)

Proof-of-Work 0000xlka3s4ysn1…

New view change Receives 2𝑓 + 1	votes
Obtains reputation-
determined PoW results

The higher the reputation penalty is, the 
more computational work a server must 
perform to be a future leader

Suppress faulty servers
Faulty servers perform more 
time-consuming computational 
work; correct servers perform 
less work

Let attacks pay
Start a view change is no 
longer free; it is associated 
with costs, which determined 
by reputation



Reputation engine: translating behavior to reputation penalty

TX B1 TX B2 TX B100VC B1 VC B2 …

Short link of VC blocks
Unzealous leadership 
competition; servers are 
indifferent to becoming 
the next leaderGood 

behavior

Long link of TX blocks
Up-to-date replication of 
transactions; servers are 
eager to participate in 
consensus

Reputation 
penalty

Translation of behavior 
in replication (TX blocks)

Translation of behavior in view changes 
(Z-core of all past penalties in VC blocks)



Performance under crash failures

• Baseline: HotStuff; 4 and 16 nodes
• Rotate leaders per 10s (r/10s) and per 30s (r/30s)

Reputation-based active view changes can completely 
avoid crashed servers in leadership changes



Performance under Byzantine failures

Reputation-based active view changes can 
gradually suppress faulty servers with a 

moderate performance drop Byzantine servers 
perform attacks

Byzantine servers have a 
high reputation penalty 
after performing attacks 

and are suppressed



Questions?

Gengrui (Edward) Zhang, PhD Candidate
University of Toronto

Website: gengruizhang.github.io

mailto:gengruizhang.github.io


Tolerating failures vs. reconfigurations

• It is impossible to pass an absolute judgement of which server is Byzantine 
faulty in the presence of asynchrony

message delay
𝑆% 𝑆!

Timeout

• Do we want to reconfigure the system each time a server fails to exhibit an 
expected behavior?

• Fault tolerance is not kicking out faulty servers (i.e., reconfiguration)



Performance of the reputation engine
Attack costs

Recovery costs


