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Jan 2019Introduction to Consensus Algorithms

Blockchain is a P2P distributed ledger technology based on 
cryptographic algorithms. Its essence is an Internet shared database.

Permissionless Blockchain
(For cooperation, node management 
is required, and each node needs a 

global address record)

(Open, Entirely Decentralized. 
Every node can freely join or left)

Proof-of-X

⇒ Proof-of-Work, PoW
⇒ Proof-of-Stake, PoS

Replicated State Machine, Repl.SM
Byzantine Fault Tolerance, BFT

⇒ Paxos, ⇒	Raft,
⇒ Practical Byzantine Fault Tolerance, PBFT

Cross chain

Permissioned Blockchain
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Blockchain is a P2P distributed ledger technology based on 
cryptographic algorithms. Its essence is an Internet shared database.

Permissionless Blockchain
(For cooperation, node management 
is required, and each node needs a 

global address record)

(Open, Entirely Decentralized. 
Every node can freely join or left)

Proof-of-X

⇒ Proof-of-Work, PoW
⇒ Proof-of-Stake, PoS

Replicated State Machine, Repl.SM
Byzantine Fault Tolerance, BFT

⇒ Paxos, ⇒	Raft,
⇒ Practical Byzantine Fault Tolerance, PBFT

Cross chain

Permissioned BlockchainNo node management …
(don’t need to know other nodes’ 

IP)

Maybe partly connected …

Merge= Longest(Chain A, Chain B) 
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1

2

3

4

5

Block number 
#...

Previous block 
#...

Transactions:
txn #...
txn #...
txn #...

Random number 
XXX…XXX

Hash (SHA-256)

Whether 
000X…XX ?

Y
Broadcast the block N

# ....
# ....

# ....

Validate

Validate

Validate

000X…XX:
The number of 0 determines the difficulty
and the time when a block could be generated

Block # ...

Prev Hash Nonce

Txn Txn ...
Prev Hash Nonce

Txn Txn ...

Block # ...

Proof-of-Work, PoW
[1] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[J]. 2008.
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Block number 
#...

Previous block 
#...

Transactions:
txn #...
txn #...
txn #...

Random number 
XXX…XXX

Hash (SHA-256)

Whether 
000X…XX ?YBroadcast the block N

Replace to X
Proof-of- XProof−of−Work, PoW [𝟏]

Proof−of−Stake, PoS [𝟖]

Proof−of−Activity, PoA [𝟗]

… Random number + Age
…

txn #...
txn #...

Reduce the “Work”

[2] King S, Nadal S. Ppcoin: Peer-to-peer crypto-currency with 
proof-of-stake[J]. self-published paper, August, 2012, 19.

Protocols for Permissionless Blockchains
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Double-Spending / Chain-forks 

(a) Consensus finality violation 
resulting in a fork

(b) Eventually, one of the blocks must be 
pruned by a conflict resolution rule 
(e.g., Bitcoin’s longest chain rule).

[4] Eyal I, Gencer A E, Sirer E G, et al. Bitcoin-NG: A Scalable 
Blockchain Protocol[C]//NSDI. 2016: 45-59.

6 / 40



Jan 2019Introduction to Consensus Algorithms

Features of Permissionless Blockchains

Transactions:
txn #...

Hash (SHA-256)

Whether
000X…XX ?

Random number 
XXX…XXX

Block Prev Hash

N

Y

# 0x3F … # 0A2F…

† Open, entirely decentralized
† No Consensus finality
† Good Scalability
† Limited Throughput
† High Latency
† Waste Power
† Fault Tolerance ?
† No correctness proofs 

Due to the design of Protocols
e.g. block size, 
difficulty of proof

Due to multi-block confirmations

Useless calculations 

Bitcoin

Applications: 𝐄𝐭𝐡𝐞𝐫𝐞𝐮𝐦
𝐒𝐚𝐰𝐭𝐨𝐨𝐭𝐡 𝐋𝐚𝐤𝐞

𝐑𝐢𝐩𝐩𝐥𝐞

Features [𝟏𝟎] :
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Blockchain is a P2P distributed ledger technology based on 
cryptographic algorithms. Its essence is an Internet shared database.

Permissionless Blockchain
(For cooperation, node management 
is required, and each node needs a 

global address record)

(Open, Entirely Decentralized. 
Every node can freely join or left)

Proof-of-X

⇒ Proof-of-Work, PoW
⇒ Proof-of-Stake, PoS

Replicated State Machine, Repl.SM
Byzantine Fault Tolerance, BFT

⇒ Paxos, ⇒	Raft,
⇒ Practical Byzantine Fault Tolerance, PBFT

Cross chain

Permissioned Blockchain
MUST need node management …
(Each node needs to know other 

nodes’ IP)

Should be fully connected, freely 
communicate to each other
(complete graph)

<Simple Majority Rules>

May influence
throughput, latency

Merge= Majority(Chain A, Chain B) 
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Permissioned Blockchain

Coordination and Agreement in 
distributed system

Interactive consistency Consensus Byzantine generals 

“decision vector”  “arbitrary failures”“crash, omissions”
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“ To reach consensus, every process 𝑝% begins in the 

undecided state and proposes a single value 𝑣%, 

drawn from a set 𝐷 (𝑖 ∈ 𝑁∗). The processes 

communicate with one another, exchanging values. 

Each process then sets the value of a decision
variable, 𝑑%. In doing so it enters the decided state, in 

which it may no longer change 𝑑%(𝑖 ∈ 𝑁∗)”

——《Distributed Systems Concepts and Design》

Consensus 
Algorithm

𝑃!

𝑃"

Propose:
𝑣& = 𝑝𝑟𝑜𝑐𝑒𝑒𝑑

Crash

Propose:
𝑣' = 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 Propose:

𝑣( = 𝑎𝑏𝑜𝑟𝑡

Accept:
𝑑& = 𝑝𝑟𝑜𝑐𝑒𝑒𝑑

Accept:
𝑑' = 𝑝𝑟𝑜𝑐𝑒𝑒𝑑

𝑃.

Consensus for three processesReplicated State Machine
Byzantine Fault Tolerance, BFT

Consensus problem
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Fault-tolerance

Crash 

Omission 

Byzantine 

ÞPaxos: 
How to choose a value?

ÞRaft: 
How to replicate a log?

ÞPBFT: 
How to guarantee the correctness 

under Byzantine conditions? 

stronger 
assumption 

stronger 
assumption 
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Leslie Lamport
http://www.lamport.org

Lamport’s research contributions have laid 
the foundations of the theory of distributed 
systems.

• “Time, Clocks, and the Ordering of Events in 
a Distributed System”, which received the 
PODC Influential Paper Award in 2000,

• “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs”, 
which defined the notion of Sequential 
consistency,

• “The Byzantine Generals' Problem”,
• “Distributed Snapshots: Determining Global 

States of a Distributed System” and
• “The Part-Time Parliament”.
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† The consensus algorithm manages a 
replicated log containing state machine 
commands from clients. 

† The state machine process identical 
sequences of commands from the logs, 
so they produce the same outputs.

𝑷𝒂𝒙𝒐𝒔 𝑹𝒂𝒇𝒕 𝑽𝒊𝒆𝒘𝑺𝒕𝒂𝒎𝒑 𝒁𝒂𝒃

Ensure Safety under non-Byzantine Conditions, 
including network delays, partitions, and packet 

loss, duplication, and reordering

Replicated State Machine

[5] Schneider F B. Implementing fault-tolerant 
services using the state machine approach: A 
tutorial[J]. ACM Computing Surveys (CSUR), 

1990, 22(4): 299-319.
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Servers: Proposers, Acceptors, Learners

System model: Asynchronous, non-Byzantine.

Replicated state machine

S1

S2 S3

𝑣𝑎𝑙𝑢𝑒) 𝑣𝑎𝑙𝑢𝑒*𝑣𝑎𝑙𝑢𝑒+ …

Paxos

[6] Lamport L. Time, clocks, and the ordering of events in a 
distributed system[J]. Communications of the ACM, 1978, 
21(7): 558-565.
[7] Lamport L. The part-time parliament[J]. ACM 
Transactions on Computer Systems (TOCS), 1998, 16(2): 
133-169.
[8] Lamport L. Paxos made simple[J]. ACM Sigact News, 
2001, 32(4): 18-25.
[9] Lampson B. The ABCD's of Paxos[C]//PODC. 2001, 1: 13.
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† Only a value that has been 
proposed may be chosen.

† Only a single value is chosen, and

† A process never learns that a 
value has been chosen unless it 
actually has been.

The Safety requirements 
for consensus are:

Safety &   Liveness

The Liveness requirements 
for consensus are:

† Some proposed value is 
eventually chosen.

† If a value is chosen, servers 
eventually learn about it.
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Proposers

& 

Acceptors

-> Active: put forth particular values to be chosen.
-> Handle client requests.

-> Passive: respond to messages from proposers.
-> Responses represent votes that from consensus.
-> Store chosen value, state of the decision process.
-> Want to know which value was chosen.

Server

Proposal

-> Each server stores maxRound: the Largest Round Number it has 
been so far.

-> To generate a new proposal number:
(1) Increment maxRound. (2 ) Concatenate with ServerId.

-> Proposers must persist maxRound on disk: must not reuse proposal 
numbers after crash /restart.

Each proposal has a unique number (proposal number)
-> Higher number take a priority over lower numbers.
-> It must be possible for a proposer to chose a new proposal 

number higher than anything it has seen/used before.

Proposal Number

Round Number

ServerId
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Proposers Acceptors
(1) Choose new proposal number n.

(2) Broadcast Prepare(n) to all servers. (3) Respond to Prepare(n):
-> If n > minProposal, then minProposal = n

-> Return (acceptedProposal, acceptedValue)(4) When responses received from majority, 
if any acceptedValue returned, replace 
value with acceptedValue for highest 

acceptedProposal.

(5) Broadcast Accept(n, value) to all servers (6) Respond to Accept(n, value):
-> If n >= minProposal then 

acceptedProposal = minProposal = n;
acceptedValue = value;
-> Return (minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue on stable storage (disk).

(7) When responses received from majority:
-> Any rejections (result > n) : go to (1)

-> Otherwise, value is chosen
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S1

S2

S3

S4

S5

P 3.1

A 3.1 XP 3.1

P 3.1

A 3.1 X

A 3.1 X P 4.5

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

1. Pervious value already chosen

server ID

A  3 . 1   X

value

proposal number

* New proposer will find it and use it
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S1

S2

S3

S4

S5

P 3.1

P 3.1

P 3.1 A 3.1 X P 4.5

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

2. Pervious value not chosen, but proposer sees it
• New proposer will use exiting value
• Both proposers can succeed

A 3.1 X

A 3.1 X
Both users succeed 

and choose the 
same value

Abandoned
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S1

S2

S3

S4

S5

P 3.1

P 3.1

P 3.1

A 3.1 X

P 4.5

P 4.5

P 4.5 A 4.5 Y

A 4.5 Y

3. Pervious value not chosen, new proposer doesn’t see it
• New proposer chooses its own value
• Older proposal blocked

A 3.1 XNo pervious 
value accepted

A 3.1 X A 4.5 Y

Abandoned

Eventually, Y 
is chosen
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S1

S2

S3

S4

S5

P 2.1

P 2.1

P 2.1

A 2.1 X

P 3.5

P 3.5

P 3.5

A 2.1 X

A 2.1 X

P 4.1

P 4.1

P 4.1 A 3.5 Y

A 3.5 Y

A 3.5 Y

P 5.5

P 5.5

P 5.5

A 4.1 X

A 4.1 X

A 4.1 X

Cutting off

Cutting off

Cutting offLivelock: Competing proposers can livelock

21 / 40



Jan 2019Introduction to Consensus Algorithms

-> Competing proposers can Livelock.

-> Only proposer knows which value has been chosen.

-> If other servers want to know, must execute Paxos with their own proposal.

Hint: 
=> one solution:

Randomized delay before 
restarting. Give other proposers a 

chance to finish choosing.

Anyone can be a proposer. 
(Advantages/Disadvantages)

Handle the request with a leader.

Multi-Paxos, Raft , Zab

Disadvantages in Basic Paxos
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Strong leader
Raft uses a stronger form of leadership than other consensus algorithm. 

For example, log entries only flow from the leader to other servers. This 
simplifies the management of the replicated log an makes Raft easier to understand.

Raft [10] Ongaro D, Ousterhout J K. In search of an understandable consensus 
algorithm[C]//USENIX Annual Technical Conference. 2014: 305-319.
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! => In normal operation there is exactly one leader and all of 
the other servers are followers. 

Server states:

Followers are passive: they 
issue no requests on their own 
but simply respond to requests 
from leaders and candidates.

The candidate is used to elect a 
new leader. (using RequestVote

RPC)

The leader handles all client 
requests (using AppendEntries

RPC).

Server

Timer

initial time 𝑡)

- trigger a timeout
- Reset to the initial time

Considers there is no alive leader 
and begins an election to choose a 

new leader.

A server remains in follower state 
as long as it receives valid RPCs 

from a leader or candidate.

RequestVote RPC

AppendEntries RPC

Follower Candidate Leader
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Follower

Starts up

Candidate

Leader

Timer
1. increment current term.
2. vote for self.
3. Reset election timer
4. Send RequestVote RPCs 

to all other servers

times out, 
new election

receives votes from 
majority of servers

discovers current 
leader or new term

discovers server 
with higher term

times out, 
starts election

Timer

Leader election

A candidate continues in this state 
until three things happens:
1. it wins the election.
2. another server establish itself as 

leader,
3. a period of time goes by with no 

winner.
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Leader

Follower f1

Follower f2

Follower f3

L

f1

f2

f3

Client
Client
Leader

f1 f2 f3

CommitIndex 1
received majority replies

LogIndex 1 1 1 1

Round k 

entries = [1]

AppendEntries RPC 

Log Replication
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Leader

Follower f1

Follower f2

Follower f3

L

f1

f2

f3

Client
Client
Leader

f1 f2 f3

CommitIndex 1

LogIndex 1 1 1 1

1 11

Round k Round k+1 

entries = [1] entries = [⟘]

AppendEntries RPC 

Log Replication
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Term

Terms are numbered with 
consecutive integers.

term 1 term 2 term 3 term 4

election normal operation no emerging leader

In a system’s dimension 

In a server’s dimension 

term 1 t 2 t 3 t 6 t7t 5 t 14

discovers server 
with higher term

receives another leader’s Append-
Entries RPC with a higher term

Time is divided into terms, and each term begins with an election. After a 
successful election, a single leader manages the cluster until the end of the term. 
Some elections fail, in which case the term ends without choosing a leader. The 
transitions between terms may be observed at different times on different servers.

Uses randomized timeouts

Raft ensures that there is at 
most one leader in a given term.

t8 t10 t12
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Case 1 => Two candidates with the same term 

𝑆1

𝑆!

𝑆.

𝑆"

𝑆2

L

F

F

F

F

×

TO C L

term 3

term 4

TO timeout of server

𝑅. 𝑉𝑜𝑡𝑒3456 2
7894: 7 from 𝑆. 𝐿𝑜𝑔3456 2

7894: 7(⊥)

TO C F
𝑅. 𝑉𝑜𝑡𝑒3456 2

7894: 7 from 𝑆2
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Case 2 => Two candidates with split votes

𝑆1

𝑆!

𝑆.

𝑆"

𝑆2

L

F

F

F

F

×

TO C

term 3

term 4

TO timeout
TO

term 5

C

𝑅. 𝑉𝑜𝑡𝑒3456 2
7894: 7 𝐿𝑜𝑔3456 ;

7894: 7(⊥)

TO

TO
F

𝑅. 𝑉𝑜𝑡𝑒3456 ;
7894: 7

L
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Case 3 => An election started by a slow node

𝑆1

𝑆!

𝑆.

𝑆"

𝑆2

L

F

F

F

F

term 3

term 4

TO timeoutTO

𝑅. 𝑉𝑜𝑡𝑒3456 2
7894: 7

𝐿𝑜𝑔3456 "
7894: 7(𝛺)

(slow)

𝐶𝑚𝑡3456 2
7894: 7<!(𝛺)𝐿𝑜𝑔3456 "

7894: 7<!(𝛺)

C F
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[10] Howard H. ARC: analysis of Raft consensus[R]. University of Cambridge, Computer 
Laboratory, 2014.
[11] Howard H, Schwarzkopf M, Madhavapeddy A, et al. Raft refloated: do we have 
consensus?[J]. ACM SIGOPS Operating Systems Review, 2015, 49(1): 12-21.
[12] Woos D, Wilcox J R, Anton S, et al. Planning for change in a formal verification of the 
Raft consensus protocol[C]//Proceedings of the 5th ACM SIGPLAN Conference on Certified 
Programs and Proofs. ACM, 2016: 154-165.
[13] Wilcox J R, Woos D, Panchekha P, et al. Verdi: a framework for implementing and 
formally verifying distributed systems[C]//ACM SIGPLAN Notices. ACM, 2015, 50(6): 357-
368.
[14] Evrard H, Lang F. Automatic distributed code generation from formal models of 
asynchronous concurrent processes[C]//Parallel, Distributed and Network-Based Processing 
(PDP), 2015 23rd Euromicro International Conference on. IEEE, 2015: 459-466.

Learn more on …
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P1

P2 P3

1: V 1: V 

P4

1: V 
2: 1: V 

3: 1: U

3: 1: W2: 1: V 
4: 1: V 4: 1: V 

P2 P3

1: W1: U

P4

1: V 
2: 1: U

2: 1: U
4: 1: V 4: 1: V 

3: 1: W

3: 1: W

P2 decides on majority(V, U, V) = V
P4 decides on majority(V, V, W) = V

P2, P4 decides on majority(V, U, W) = Ø
(no majority values exists)

(Commander) P1 (Commander)

=> Assume that processes can exhibit arbitrary failures.Byzantine Condition
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f1

f2

f3

request

Leader

Client
pre-prepare prepare commit reply

• A client sends a request to invoke a service operation to the primary.
• The primary multicasts the request to the backups.
• Replicas execute the request and send a reply to the client.
• The client waits for f+1 replies from different replicas with the same results; 

this is the result of the operation.

PBFT: tolerant Byzantine failures with 3f+1 nodes 
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[15] Lamport L, Shostak R, Pease M. The Byzantine generals problem[J]. ACM Transactions on 
Programming Languages and Systems (TOPLAS), 1982, 4(3): 382-401.
[16] Schneider F B. Byzantine generals in action: Implementing fail-stop processors[J]. ACM 
Transactions on Computer Systems (TOCS), 1984, 2(2): 145-154.
[17] Veronese G S, Correia M, Bessani A N, et al. Efficient byzantine fault-tolerance[J]. 
IEEE Transactions on Computers, 2013, 62(1): 16-30.
[18] Castro M, Liskov B. Practical Byzantine fault tolerance[C]//OSDI. 1999, 99: 173-186.
[19] Liu S, Viotti P, Cachin C, et al. XFT: Practical Fault Tolerance beyond Crashes[C]//OSDI. 
2016: 485-500.
[20] Miller A, Xia Y, Croman K, et al. The honey badger of BFT protocols[C]//Proceedings of 
the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016: 
31-42.

Learn more on …
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Some High-level Comparisons
Proof-Of-Work Repli. StateM. / BFT based protocols

Node identity 
management Open, entirely decentralized Permissioned, nodes need to know IDs of 

all other nodes

Consensus finality no yes

Throughput Limited (due to possible chain forks) Good ( tens of thousands tps)

Scalability Excellent (like Bitcoin) Limited (not well explored)

Latency High latency
(due to multi-block confirmations)

Excellent
(effected by network latency)

Power consumption Poor (useless hash calculations) good

Network synchrony 
assumptions Physical clock timestamps None for consensus safety

Correctness proofs no yes
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Performance and Scalability

Performance

Scalability

10k tps

100 tps

PBFT

20 nodes 1k nodes

XFT Parallel BFT
Optimistic BFT

Hybrid BFT

Randomized BFT

PoW
PoS

Bitcoin-NG

goal
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Blockchain as a Service (BAAS)
—Smart Contracts and Blockchain 2.0

Application

Consensus

Network

Transaction

Application

Consensus

Network

Transaction

Application

Consensus

Network

Transaction
TransactionBlockst 1

t 2

t 3

I. Chain structure
II. Encrypted data
III. Block header
IV. Logic time stamp
V. Signatures

Blocks

Blocks

Network
I. Communication protocols
II. Finite number of nodes
III. Node management
IV. Validation

1

5

4 3

2

graphs

Consensus
I. State machine based protocols
II. Proof-Of-X based protocols
III. BFT based protocolsServers

+
+
+

++ +

Clients

Application

Consensus

Network

Transaction

• Smart Contract
• Cooperation
• …
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Applications

Blockchain framework
“Consensus Algorithm”,

“Data Structure”

Blockchain as a Service (BaaS)

Blockchain based Applications
(Used car trading model, Real estate 

registration)

Digital Content 
Protection

“Blockchain based”
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Thanks for listening!

Gengrui (Edward) Zhang
Email: gengrui.zhang@mail.utoronto.ca
Web: https://gengruizhang.github.io


