
Blockchains and
Consensus Protocols

Gengrui(Edward) Zhang
Ph.D. Student

Dept. of Electrical & Computer Engineering

Jan 2019Introduction to Consensus Algorithms

Blockchain is a P2P distributed ledger technology based on
cryptographic algorithms. Its essence is an Internet shared database.

Permissionless Blockchain
(For cooperation, node management
is required, and each node needs a

global address record)

(Open, Entirely Decentralized.
Every node can freely join or left)

Proof-of-X

⇒ Proof-of-Work, PoW
⇒ Proof-of-Stake, PoS

Replicated State Machine, Repl.SM
Byzantine Fault Tolerance, BFT

⇒ Paxos, ⇒	Raft,
⇒ Practical Byzantine Fault Tolerance, PBFT

Cross chain

Permissioned Blockchain

2 / 40

Jan 2019Introduction to Consensus Algorithms

Blockchain is a P2P distributed ledger technology based on
cryptographic algorithms. Its essence is an Internet shared database.

Permissionless Blockchain
(For cooperation, node management
is required, and each node needs a

global address record)

(Open, Entirely Decentralized.
Every node can freely join or left)

Proof-of-X

⇒ Proof-of-Work, PoW
⇒ Proof-of-Stake, PoS

Replicated State Machine, Repl.SM
Byzantine Fault Tolerance, BFT

⇒ Paxos, ⇒	Raft,
⇒ Practical Byzantine Fault Tolerance, PBFT

Cross chain

Permissioned BlockchainNo node management …
(don’t need to know other nodes’

IP)

Maybe partly connected …

Merge= Longest(Chain A, Chain B)

3 / 40

Jan 2019Introduction to Consensus Algorithms

1

2

3

4

5

Block number
#...

Previous block
#...

Transactions:
txn #...
txn #...
txn #...

Random number
XXX…XXX

Hash (SHA-256)

Whether
000X…XX ?

Y
Broadcast the block N

....
....

....

Validate

Validate

Validate

000X…XX:
The number of 0 determines the difficulty
and the time when a block could be generated

Block # ...

Prev Hash Nonce

Txn Txn ...
Prev Hash Nonce

Txn Txn ...

Block # ...

Proof-of-Work, PoW
[1] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[J]. 2008.

4 / 40

Jan 2019Introduction to Consensus Algorithms

Block number
#...

Previous block
#...

Transactions:
txn #...
txn #...
txn #...

Random number
XXX…XXX

Hash (SHA-256)

Whether
000X…XX ?YBroadcast the block N

Replace to X
Proof-of- XProof−of−Work, PoW [𝟏]

Proof−of−Stake, PoS [𝟖]

Proof−of−Activity, PoA [𝟗]

… Random number + Age
…

txn #...
txn #...

Reduce the “Work”

[2] King S, Nadal S. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake[J]. self-published paper, August, 2012, 19.

Protocols for Permissionless Blockchains

5 / 40

Jan 2019Introduction to Consensus Algorithms

Double-Spending / Chain-forks

(a) Consensus finality violation
resulting in a fork

(b) Eventually, one of the blocks must be
pruned by a conflict resolution rule
(e.g., Bitcoin’s longest chain rule).

[4] Eyal I, Gencer A E, Sirer E G, et al. Bitcoin-NG: A Scalable
Blockchain Protocol[C]//NSDI. 2016: 45-59.

6 / 40

Jan 2019Introduction to Consensus Algorithms

Features of Permissionless Blockchains

Transactions:
txn #...

Hash (SHA-256)

Whether
000X…XX ?

Random number
XXX…XXX

Block Prev Hash

N

Y

0x3F … # 0A2F…

† Open, entirely decentralized
† No Consensus finality
† Good Scalability
† Limited Throughput
† High Latency
† Waste Power
† Fault Tolerance ?
† No correctness proofs

Due to the design of Protocols
e.g. block size,
difficulty of proof

Due to multi-block confirmations

Useless calculations

Bitcoin

Applications: 𝐄𝐭𝐡𝐞𝐫𝐞𝐮𝐦
𝐒𝐚𝐰𝐭𝐨𝐨𝐭𝐡 𝐋𝐚𝐤𝐞

𝐑𝐢𝐩𝐩𝐥𝐞

Features [𝟏𝟎] :

7 / 40

Jan 2019Introduction to Consensus Algorithms

Blockchain is a P2P distributed ledger technology based on
cryptographic algorithms. Its essence is an Internet shared database.

Permissionless Blockchain
(For cooperation, node management
is required, and each node needs a

global address record)

(Open, Entirely Decentralized.
Every node can freely join or left)

Proof-of-X

⇒ Proof-of-Work, PoW
⇒ Proof-of-Stake, PoS

Replicated State Machine, Repl.SM
Byzantine Fault Tolerance, BFT

⇒ Paxos, ⇒	Raft,
⇒ Practical Byzantine Fault Tolerance, PBFT

Cross chain

Permissioned Blockchain
MUST need node management …
(Each node needs to know other

nodes’ IP)

Should be fully connected, freely
communicate to each other
(complete graph)

<Simple Majority Rules>

May influence
throughput, latency

Merge= Majority(Chain A, Chain B)

8 / 40

Jan 2019Introduction to Consensus Algorithms

Permissioned Blockchain

Coordination and Agreement in
distributed system

Interactive consistency Consensus Byzantine generals

“decision vector” “arbitrary failures”“crash, omissions”

9 / 40

Jan 2019Introduction to Consensus Algorithms

“ To reach consensus, every process 𝑝% begins in the

undecided state and proposes a single value 𝑣%,

drawn from a set 𝐷 (𝑖 ∈ 𝑁∗). The processes

communicate with one another, exchanging values.

Each process then sets the value of a decision
variable, 𝑑%. In doing so it enters the decided state, in

which it may no longer change 𝑑%(𝑖 ∈ 𝑁∗)”

——《Distributed Systems Concepts and Design》

Consensus
Algorithm

𝑃!

𝑃"

Propose:
𝑣& = 𝑝𝑟𝑜𝑐𝑒𝑒𝑑

Crash

Propose:
𝑣' = 𝑝𝑟𝑜𝑐𝑒𝑒𝑑 Propose:

𝑣(= 𝑎𝑏𝑜𝑟𝑡

Accept:
𝑑& = 𝑝𝑟𝑜𝑐𝑒𝑒𝑑

Accept:
𝑑' = 𝑝𝑟𝑜𝑐𝑒𝑒𝑑

𝑃.

Consensus for three processesReplicated State Machine
Byzantine Fault Tolerance, BFT

Consensus problem

10 / 40

Jan 2019Introduction to Consensus Algorithms

Fault-tolerance

Crash

Omission

Byzantine

ÞPaxos:
How to choose a value?

ÞRaft:
How to replicate a log?

ÞPBFT:
How to guarantee the correctness

under Byzantine conditions?

stronger
assumption

stronger
assumption

11 / 40

Jan 2019Introduction to Consensus Algorithms

Leslie Lamport
http://www.lamport.org

Lamport’s research contributions have laid
the foundations of the theory of distributed
systems.

• “Time, Clocks, and the Ordering of Events in
a Distributed System”, which received the
PODC Influential Paper Award in 2000,

• “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs”,
which defined the notion of Sequential
consistency,

• “The Byzantine Generals' Problem”,
• “Distributed Snapshots: Determining Global

States of a Distributed System” and
• “The Part-Time Parliament”.

12 / 40

Jan 2019Introduction to Consensus Algorithms

† The consensus algorithm manages a
replicated log containing state machine
commands from clients.

† The state machine process identical
sequences of commands from the logs,
so they produce the same outputs.

𝑷𝒂𝒙𝒐𝒔 𝑹𝒂𝒇𝒕 𝑽𝒊𝒆𝒘𝑺𝒕𝒂𝒎𝒑 𝒁𝒂𝒃

Ensure Safety under non-Byzantine Conditions,
including network delays, partitions, and packet

loss, duplication, and reordering

Replicated State Machine

[5] Schneider F B. Implementing fault-tolerant
services using the state machine approach: A
tutorial[J]. ACM Computing Surveys (CSUR),

1990, 22(4): 299-319.

13 / 40

Jan 2019Introduction to Consensus Algorithms

Servers: Proposers, Acceptors, Learners

System model: Asynchronous, non-Byzantine.

Replicated state machine

S1

S2 S3

𝑣𝑎𝑙𝑢𝑒) 𝑣𝑎𝑙𝑢𝑒*𝑣𝑎𝑙𝑢𝑒+ …

Paxos

[6] Lamport L. Time, clocks, and the ordering of events in a
distributed system[J]. Communications of the ACM, 1978,
21(7): 558-565.
[7] Lamport L. The part-time parliament[J]. ACM
Transactions on Computer Systems (TOCS), 1998, 16(2):
133-169.
[8] Lamport L. Paxos made simple[J]. ACM Sigact News,
2001, 32(4): 18-25.
[9] Lampson B. The ABCD's of Paxos[C]//PODC. 2001, 1: 13.

14 / 40

Jan 2019Introduction to Consensus Algorithms

† Only a value that has been
proposed may be chosen.

† Only a single value is chosen, and

† A process never learns that a
value has been chosen unless it
actually has been.

The Safety requirements
for consensus are:

Safety & Liveness

The Liveness requirements
for consensus are:

† Some proposed value is
eventually chosen.

† If a value is chosen, servers
eventually learn about it.

15 / 40

Jan 2019Introduction to Consensus Algorithms

Proposers

&

Acceptors

-> Active: put forth particular values to be chosen.
-> Handle client requests.

-> Passive: respond to messages from proposers.
-> Responses represent votes that from consensus.
-> Store chosen value, state of the decision process.
-> Want to know which value was chosen.

Server

Proposal

-> Each server stores maxRound: the Largest Round Number it has
been so far.

-> To generate a new proposal number:
(1) Increment maxRound. (2) Concatenate with ServerId.

-> Proposers must persist maxRound on disk: must not reuse proposal
numbers after crash /restart.

Each proposal has a unique number (proposal number)
-> Higher number take a priority over lower numbers.
-> It must be possible for a proposer to chose a new proposal

number higher than anything it has seen/used before.

Proposal Number

Round Number

ServerId

16 / 40

Jan 2019Introduction to Consensus Algorithms

Proposers Acceptors
(1) Choose new proposal number n.

(2) Broadcast Prepare(n) to all servers. (3) Respond to Prepare(n):
-> If n > minProposal, then minProposal = n

-> Return (acceptedProposal, acceptedValue)(4) When responses received from majority,
if any acceptedValue returned, replace
value with acceptedValue for highest

acceptedProposal.

(5) Broadcast Accept(n, value) to all servers (6) Respond to Accept(n, value):
-> If n >= minProposal then

acceptedProposal = minProposal = n;
acceptedValue = value;
-> Return (minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue on stable storage (disk).

(7) When responses received from majority:
-> Any rejections (result > n) : go to (1)

-> Otherwise, value is chosen

17 / 40

Jan 2019Introduction to Consensus Algorithms

S1

S2

S3

S4

S5

P 3.1

A 3.1 XP 3.1

P 3.1

A 3.1 X

A 3.1 X P 4.5

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

1. Pervious value already chosen

server ID

A 3 . 1 X

value

proposal number

* New proposer will find it and use it

18 / 40

Jan 2019Introduction to Consensus Algorithms

S1

S2

S3

S4

S5

P 3.1

P 3.1

P 3.1 A 3.1 X P 4.5

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

2. Pervious value not chosen, but proposer sees it
• New proposer will use exiting value
• Both proposers can succeed

A 3.1 X

A 3.1 X
Both users succeed

and choose the
same value

Abandoned

19 / 40

Jan 2019Introduction to Consensus Algorithms

S1

S2

S3

S4

S5

P 3.1

P 3.1

P 3.1

A 3.1 X

P 4.5

P 4.5

P 4.5 A 4.5 Y

A 4.5 Y

3. Pervious value not chosen, new proposer doesn’t see it
• New proposer chooses its own value
• Older proposal blocked

A 3.1 XNo pervious
value accepted

A 3.1 X A 4.5 Y

Abandoned

Eventually, Y
is chosen

20 / 40

Jan 2019Introduction to Consensus Algorithms

S1

S2

S3

S4

S5

P 2.1

P 2.1

P 2.1

A 2.1 X

P 3.5

P 3.5

P 3.5

A 2.1 X

A 2.1 X

P 4.1

P 4.1

P 4.1 A 3.5 Y

A 3.5 Y

A 3.5 Y

P 5.5

P 5.5

P 5.5

A 4.1 X

A 4.1 X

A 4.1 X

Cutting off

Cutting off

Cutting offLivelock: Competing proposers can livelock

21 / 40

Jan 2019Introduction to Consensus Algorithms

-> Competing proposers can Livelock.

-> Only proposer knows which value has been chosen.

-> If other servers want to know, must execute Paxos with their own proposal.

Hint:
=> one solution:

Randomized delay before
restarting. Give other proposers a

chance to finish choosing.

Anyone can be a proposer.
(Advantages/Disadvantages)

Handle the request with a leader.

Multi-Paxos, Raft , Zab

Disadvantages in Basic Paxos

22 / 40

Jan 2019Introduction to Consensus Algorithms

Strong leader
Raft uses a stronger form of leadership than other consensus algorithm.

For example, log entries only flow from the leader to other servers. This
simplifies the management of the replicated log an makes Raft easier to understand.

Raft [10] Ongaro D, Ousterhout J K. In search of an understandable consensus
algorithm[C]//USENIX Annual Technical Conference. 2014: 305-319.

23 / 40

Jan 2019Introduction to Consensus Algorithms

! => In normal operation there is exactly one leader and all of
the other servers are followers.

Server states:

Followers are passive: they
issue no requests on their own
but simply respond to requests
from leaders and candidates.

The candidate is used to elect a
new leader. (using RequestVote

RPC)

The leader handles all client
requests (using AppendEntries

RPC).

Server

Timer

initial time 𝑡)

- trigger a timeout
- Reset to the initial time

Considers there is no alive leader
and begins an election to choose a

new leader.

A server remains in follower state
as long as it receives valid RPCs

from a leader or candidate.

RequestVote RPC

AppendEntries RPC

Follower Candidate Leader

24 / 40

Jan 2019Introduction to Consensus Algorithms

Follower

Starts up

Candidate

Leader

Timer
1. increment current term.
2. vote for self.
3. Reset election timer
4. Send RequestVote RPCs

to all other servers

times out,
new election

receives votes from
majority of servers

discovers current
leader or new term

discovers server
with higher term

times out,
starts election

Timer

Leader election

A candidate continues in this state
until three things happens:
1. it wins the election.
2. another server establish itself as

leader,
3. a period of time goes by with no

winner.

25 / 40

Jan 2019Introduction to Consensus Algorithms

Leader

Follower f1

Follower f2

Follower f3

L

f1

f2

f3

Client
Client
Leader

f1 f2 f3

CommitIndex 1
received majority replies

LogIndex 1 1 1 1

Round k

entries = [1]

AppendEntries RPC

Log Replication

26 / 40

Jan 2019Introduction to Consensus Algorithms

Leader

Follower f1

Follower f2

Follower f3

L

f1

f2

f3

Client
Client
Leader

f1 f2 f3

CommitIndex 1

LogIndex 1 1 1 1

1 11

Round k Round k+1

entries = [1] entries = [⟘]

AppendEntries RPC

Log Replication

27 / 40

Jan 2019Introduction to Consensus Algorithms

Term

Terms are numbered with
consecutive integers.

term 1 term 2 term 3 term 4

election normal operation no emerging leader

In a system’s dimension

In a server’s dimension

term 1 t 2 t 3 t 6 t7t 5 t 14

discovers server
with higher term

receives another leader’s Append-
Entries RPC with a higher term

Time is divided into terms, and each term begins with an election. After a
successful election, a single leader manages the cluster until the end of the term.
Some elections fail, in which case the term ends without choosing a leader. The
transitions between terms may be observed at different times on different servers.

Uses randomized timeouts

Raft ensures that there is at
most one leader in a given term.

t8 t10 t12

28 / 40

Jan 2019Introduction to Consensus Algorithms

Case 1 => Two candidates with the same term

𝑆1

𝑆!

𝑆.

𝑆"

𝑆2

L

F

F

F

F

×

TO C L

term 3

term 4

TO timeout of server

𝑅. 𝑉𝑜𝑡𝑒3456 2
7894: 7 from 𝑆. 𝐿𝑜𝑔3456 2

7894: 7(⊥)

TO C F
𝑅. 𝑉𝑜𝑡𝑒3456 2

7894: 7 from 𝑆2

29 / 40

Jan 2019Introduction to Consensus Algorithms

Case 2 => Two candidates with split votes

𝑆1

𝑆!

𝑆.

𝑆"

𝑆2

L

F

F

F

F

×

TO C

term 3

term 4

TO timeout
TO

term 5

C

𝑅. 𝑉𝑜𝑡𝑒3456 2
7894: 7 𝐿𝑜𝑔3456 ;

7894: 7(⊥)

TO

TO
F

𝑅. 𝑉𝑜𝑡𝑒3456 ;
7894: 7

L

30 / 40

Jan 2019Introduction to Consensus Algorithms

Case 3 => An election started by a slow node

𝑆1

𝑆!

𝑆.

𝑆"

𝑆2

L

F

F

F

F

term 3

term 4

TO timeoutTO

𝑅. 𝑉𝑜𝑡𝑒3456 2
7894: 7

𝐿𝑜𝑔3456 "
7894: 7(𝛺)

(slow)

𝐶𝑚𝑡3456 2
7894: 7<!(𝛺)𝐿𝑜𝑔3456 "

7894: 7<!(𝛺)

C F

31 / 40

Jan 2019Introduction to Consensus Algorithms

[10] Howard H. ARC: analysis of Raft consensus[R]. University of Cambridge, Computer
Laboratory, 2014.
[11] Howard H, Schwarzkopf M, Madhavapeddy A, et al. Raft refloated: do we have
consensus?[J]. ACM SIGOPS Operating Systems Review, 2015, 49(1): 12-21.
[12] Woos D, Wilcox J R, Anton S, et al. Planning for change in a formal verification of the
Raft consensus protocol[C]//Proceedings of the 5th ACM SIGPLAN Conference on Certified
Programs and Proofs. ACM, 2016: 154-165.
[13] Wilcox J R, Woos D, Panchekha P, et al. Verdi: a framework for implementing and
formally verifying distributed systems[C]//ACM SIGPLAN Notices. ACM, 2015, 50(6): 357-
368.
[14] Evrard H, Lang F. Automatic distributed code generation from formal models of
asynchronous concurrent processes[C]//Parallel, Distributed and Network-Based Processing
(PDP), 2015 23rd Euromicro International Conference on. IEEE, 2015: 459-466.

Learn more on …

32 / 40

Jan 2019Introduction to Consensus Algorithms

P1

P2 P3

1: V 1: V

P4

1: V
2: 1: V

3: 1: U

3: 1: W2: 1: V
4: 1: V 4: 1: V

P2 P3

1: W1: U

P4

1: V
2: 1: U

2: 1: U
4: 1: V 4: 1: V

3: 1: W

3: 1: W

P2 decides on majority(V, U, V) = V
P4 decides on majority(V, V, W) = V

P2, P4 decides on majority(V, U, W) = Ø
(no majority values exists)

(Commander) P1 (Commander)

=> Assume that processes can exhibit arbitrary failures.Byzantine Condition

33 / 40

Jan 2019Introduction to Consensus Algorithms

f1

f2

f3

request

Leader

Client
pre-prepare prepare commit reply

• A client sends a request to invoke a service operation to the primary.
• The primary multicasts the request to the backups.
• Replicas execute the request and send a reply to the client.
• The client waits for f+1 replies from different replicas with the same results;

this is the result of the operation.

PBFT: tolerant Byzantine failures with 3f+1 nodes

34 / 40

Jan 2019Introduction to Consensus Algorithms

[15] Lamport L, Shostak R, Pease M. The Byzantine generals problem[J]. ACM Transactions on
Programming Languages and Systems (TOPLAS), 1982, 4(3): 382-401.
[16] Schneider F B. Byzantine generals in action: Implementing fail-stop processors[J]. ACM
Transactions on Computer Systems (TOCS), 1984, 2(2): 145-154.
[17] Veronese G S, Correia M, Bessani A N, et al. Efficient byzantine fault-tolerance[J].
IEEE Transactions on Computers, 2013, 62(1): 16-30.
[18] Castro M, Liskov B. Practical Byzantine fault tolerance[C]//OSDI. 1999, 99: 173-186.
[19] Liu S, Viotti P, Cachin C, et al. XFT: Practical Fault Tolerance beyond Crashes[C]//OSDI.
2016: 485-500.
[20] Miller A, Xia Y, Croman K, et al. The honey badger of BFT protocols[C]//Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016:
31-42.

Learn more on …

35 / 40

Jan 2019Introduction to Consensus Algorithms

Some High-level Comparisons
Proof-Of-Work Repli. StateM. / BFT based protocols

Node identity
management Open, entirely decentralized Permissioned, nodes need to know IDs of

all other nodes

Consensus finality no yes

Throughput Limited (due to possible chain forks) Good (tens of thousands tps)

Scalability Excellent (like Bitcoin) Limited (not well explored)

Latency High latency
(due to multi-block confirmations)

Excellent
(effected by network latency)

Power consumption Poor (useless hash calculations) good

Network synchrony
assumptions Physical clock timestamps None for consensus safety

Correctness proofs no yes

36 / 40

Jan 2019Introduction to Consensus Algorithms

Performance and Scalability

Performance

Scalability

10k tps

100 tps

PBFT

20 nodes 1k nodes

XFT Parallel BFT
Optimistic BFT

Hybrid BFT

Randomized BFT

PoW
PoS

Bitcoin-NG

goal

37 / 40

Jan 2019Introduction to Consensus Algorithms

Blockchain as a Service (BAAS)
—Smart Contracts and Blockchain 2.0

Application

Consensus

Network

Transaction

Application

Consensus

Network

Transaction

Application

Consensus

Network

Transaction
TransactionBlockst 1

t 2

t 3

I. Chain structure
II. Encrypted data
III. Block header
IV. Logic time stamp
V. Signatures

Blocks

Blocks

Network
I. Communication protocols
II. Finite number of nodes
III. Node management
IV. Validation

1

5

4 3

2

graphs

Consensus
I. State machine based protocols
II. Proof-Of-X based protocols
III. BFT based protocolsServers

+
+
+

++ +

Clients

Application

Consensus

Network

Transaction

• Smart Contract
• Cooperation
• …

38 / 40

Jan 2019Introduction to Consensus Algorithms

Applications

Blockchain framework
“Consensus Algorithm”,

“Data Structure”

Blockchain as a Service (BaaS)

Blockchain based Applications
(Used car trading model, Real estate

registration)

Digital Content
Protection

“Blockchain based”

39 / 40

Thanks for listening!

Gengrui (Edward) Zhang
Email: gengrui.zhang@mail.utoronto.ca
Web: https://gengruizhang.github.io

