
Introduction to Consensus Algorithms

Edward (Gengrui) Zhang, PhD Candidate

ECE, University of Toronto

ECE1779 Guest Lecture



What is a consensus algorithm?

• ``Consensus’’ means ``a general agreement’’
• In distributed systems, consensus algorithms coordinate server actions to 

reach agreement on committing values/executing commands

𝑆! 𝑆"

𝑆#
< 𝑣! >

< 𝑣" > < 𝑣# >

Execution order 
of values

< 𝑛, 𝑣! >
< 𝑛 + 1, 𝑣" >
< 𝑛 + 2, 𝑣# >

Sequence #; 
order

Value; entry; 
transaction; 
command

2

Let’s go to 
the beach

Let’s have 
Popeyes Let’s go 

shopping 

Guest lecture: Introduction to Consensus Algorithms

Server 
cluster



Why do we need consensus algorithms?

• Clients invoke a service by 
sending a request to server

• Server replies to the client with 
the result of invocation

𝑆#

𝐶# A

Transaction:
Tx A

Alice’s account

Action:
Execute Tx A

Result:
Tx A: True

Confirmation:
Tx A: Succeeded

Question:
What if the server fails?

Does this model suffice to build 
safety-critical applications?

3 Guest lecture: Introduction to Consensus Algorithms



Failures are inevitable and ubiquitous

Credit: bennio. via Reddit

System Design Goal:
We need a system that can tolerate failures;

i.e., a system that can function correctly 
when failures take place

4 Guest lecture: Introduction to Consensus Algorithms



Family of failures

𝑆#

𝑆!

Crash failures
< 𝑘, 𝑣 >

5 Guest lecture: Introduction to Consensus Algorithms



Family of failures

𝑆#

𝑆!

< 𝑘, 𝑣 >

Crash failures

Omission failures

6 Guest lecture: Introduction to Consensus Algorithms



Family of failures

𝑆#

𝑆!

< 𝑘, 𝑣 >

Crash failures

Omission failures

Timing failures

Benign failures
In response to a failure, 
servers change to a state 
that permits other servers 
to detect that failure

7 Guest lecture: Introduction to Consensus Algorithms

Read(k)
Return → null



Family of failures

𝑆#

𝑆!

< 𝑘, 𝑣 >

Crash failures

Omission failures

Timing failures

Benign failures

Read(k)
Return → u

Read(k)
Return → w

Byzantine failures/
Internal attacks/
Intrusion attacks

Byzantine failures

8 Guest lecture: Introduction to Consensus Algorithms

In response to a failure, 
servers change to a state 
that permits other servers 
to detect that failure

Servers can exhibit arbitrary 
and malicious behavior; 
faulty servers can collude



Applying fault tolerance with redundancy

• Fault tolerance makes the system operate correctly even if some servers 
become faulty

Question
How can we make a set of servers operate like a logically single 

server? I.e., how can we manage the consistency among servers?

• Redundancy in distributed systems: a collection of independent servers
• Normally, a set of servers operate as a logically single server
• If some servers are down, the remaining ones can still perform the task

Q: Recall how does the disk system tolerate failures?

9 Guest lecture: Introduction to Consensus Algorithms

A: RAID (Redundant Array of Independent Disks)



State machine replication (SMR)
• SMR is a replication service 

where a set of servers 
compute identical copies of 
the same state 

• SMR provides an abstraction 
of its replication service with 
a client interface

• Clients treat SMR services as 
a black box

• Send requests to the 
provided interface

• Wait for replies to confirm 
their requests

𝑆!

𝑆"

𝑆,𝑆-

𝑆#

𝐶#

𝐶!

Clients Service

A

B

Abstraction of 
State Machine 

Replication Services 

C
lient Interface

10 Guest lecture: Introduction to Consensus Algorithms



Consensus algorithms in SMR
• Consensus algorithms guarantee two 

service properties: safety & liveness

𝑆!

𝑆"

𝑆,𝑆-

𝑆#

𝐶#

𝐶!

Clients Service

Abstraction of 
State Machine 

Replication Services 

C
lient Interface

Safety
All non-faulty servers agree on a total 

order for the execution of requests 
despite failures

• Exemplary algorithms:
• Viewstamped Replication (1988)
• Paxos (1998, 2001)

• Leslie Lamport
• Raft (2014)

Liveness
Clients eventually receive replies to 

their requests

11 Guest lecture: Introduction to Consensus Algorithms

Consensus algorithms coordinate server 
actions to coherently update server states



The Raft consensus algorithm

• Published by Diego Ongaro et al. (from Stanford) and received Best Paper 
Award from 2014 USENIX Annual Technical Conference

• Raft is a leader-based consensus algorithm
• More understandable than Paxos
• Uses a designated server as a leader
• Tolerates benign failures 

• E.g., server crash, packet loss, duplication, and reordering

• It has had a great impact on a wide range of applications:
• File systems: PolarFS [VLDB’18]

• Databases: CockroachDB[Sigmod’20], Etcd, and MongoDB (a Raft’s variant)
• Cloud computing: Docker (cluster state), Kubernetes (replication)

12 Guest lecture: Introduction to Consensus Algorithms

Replicated And 
Fault Tolerant

https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://docs.docker.com/engine/swarm/raft/
https://kubernetes.io/blog/2019/08/30/announcing-etcd-3-4/


Raft basics 1: server states and terms 
• Raft has two major operating stages

• Replication and leader election
• Each server is in one of three states at any given 

time: leader, follower, candidate
• Time is divided into terms (logical time), which 

increase monotonically

Guest lecture: Introduction to Consensus Algorithms13

𝑆!

𝑆"

𝑆,𝑆-

𝑆#

Leader

Follower

Follower

FollowerFollower

Term 1 Under normal operation, there is one leader in a term 
and other servers run as followers; the leader coordinates 
server actions to conduct consensus

When a leader fails, the other servers start leader election 
to select a new leader from the remaining servers

Consensus in replication Consensus in leader election



Raft basics 2: timers and heartbeats

• Each follower uses a timer to monitor the 
health of the leader

• Timer keeps counting down until 
follower receives a message from 
leader

• Otherwise, timer expires; follower 
becomes a candidate and starts a 
leader election campaign

• Leader sends periodic heartbeats to reset 
followers’ timers

• Interval of heartbeats << Timer timeouts
(e.g., 100 ms) (e.g., 1-2 s)

𝑆#

𝑆!

Timer

Term 1Leader

Follower

14 Guest lecture: Introduction to Consensus Algorithms



Replication in Raft (Phase Ι: ordering)

• Clients send requests to leader

𝑆!

𝑆"

𝑆,𝑆-

𝑆#

𝐶#

𝐶!

Clients Service

A

B

𝑆!:
𝑆":
𝑆#:
𝑆$:
𝑆%:

𝑆!:
𝑆":
𝑆#:
𝑆$:
𝑆%:

Ordering Commit
A B

In term 1 (leader: 𝑆!)

15 Guest lecture: Introduction to Consensus Algorithms



Replication in Raft (Phase Ι: ordering)

• Clients send requests to leader
• Leader assigns a sequence # to 

client request
• E.g., < 𝑛, 𝑎 >; < 𝑛 + 1, 𝑏 >

𝑆!

𝑆"

𝑆,𝑆-

𝑆#

𝐶#

𝐶!

Clients Service
𝑆!:
𝑆":
𝑆#:
𝑆$:
𝑆%:

𝑆!:
𝑆":
𝑆#:
𝑆$:
𝑆%:

Ordering Commit
A B

In term 1 (leader: 𝑆!)

A
A
A
A

16 Guest lecture: Introduction to Consensus Algorithms



Replication in Raft (Phase ΙΙ: committing)

• Clients send requests to leader
• Leader assigns a sequence # to 

client request
• E.g., < 𝑛, 𝑎 >; < 𝑛 + 1, 𝑏 >

• Leader commits the value if a 
majority of replies can be 
collected

𝑆!

𝑆"

𝑆,𝑆-

𝑆#

𝐶#

𝐶!

Clients Service
𝑆!:
𝑆":
𝑆#:
𝑆$:
𝑆%:

𝑆!:
𝑆":
𝑆#:
𝑆$:
𝑆%:

Ordering Commit
A B

In term 1 (leader: 𝑆!)

A
A
A
A

A

17 Guest lecture: Introduction to Consensus Algorithms



Replication in Raft (Phase ΙΙ: committing)

𝑆!

𝑆"

𝑆,𝑆-

𝑆#

𝐶#

𝐶!

Clients Service
𝑆!:
𝑆":
𝑆#:
𝑆$:
𝑆%:

𝑆!:
𝑆":
𝑆#:
𝑆$:
𝑆%:

Ordering Commit
A B

In term 1 (leader: 𝑆!)

A
A
A
A

A
A
A
A

A

• Clients send requests to leader
• Leader assigns a sequence # to 

client request
• E.g., < 𝑛, 𝑎 >; < 𝑛 + 1, 𝑏 >

• Leader commits the value if a 
majority of replies can be 
collected

18 Guest lecture: Introduction to Consensus Algorithms



Summary of Raft’s replication

• Strong leadership: 
• Log entries flow only from the leader to followers
• Follower must synchronize its log according to leader’s log

• Quorum replication:
• In a system consisting of 𝑛 = 2𝑓 + 1 servers, an action can be 

agreed upon by 𝑓 + 1 servers (majority)
• E.g., in a 5-server system, 3 servers form a majority

• A minority (≤ 𝑓) of slow servers do not impact overall replication 
performance

19 Guest lecture: Introduction to Consensus Algorithms



Impact of failures

• Under a correct leader, as long as a majority of servers are correct, the 
system can operate correctly

However, what if the leader fails?

• Leader is the most crucial role
• It interacts with clients and coordinates consensus with other servers
• Other servers synchronize with the leader

Make sure the system never 
falls back to a previous state; 

i.e., not loosing log entries 
when leadership changes

20 Guest lecture: Introduction to Consensus Algorithms

A new leader should have
• the highest term value
• the most up-to-date log



Solution 1: Passive leadership rotation

• All servers follow a pre-defined leader 
schedule to rotate leadership

• Leader = Term mod # of servers
• I.e., leadership is assigned to
𝑆! → 𝑆" → 𝑆#→ 𝑆+ → 𝑆, → 𝑆! → ⋯

• Pros: 
• Simple; easy to understand and implement

• Cons:
• Cannot avoid already crashed servers
• Cannot avoid slow servers

𝑆!

𝑆"

𝑆,𝑆-

𝑆#

Can we do better?

Term 1

Term 2

Term 3

[Viewstamped Replication] 
21 Guest lecture: Introduction to Consensus Algorithms



𝑆-

Raft’s solution: Active leader election
• No leader schedule; whoever triggers a 

timeout campaigns for leadership
• Transitions to candidate
• Increments its term
• Sends out messages to request votes 

from other servers in the form of <term, 
lastLogIndex, lastLogTerm>

• Votes for itself
• Other servers vote for the candidate if

• Candidate’s term >= receiver’s term
• Receiver has not voted in this term
• Candidate’s log is at least as up-to-date 

as receiver’s log

𝑆!

𝑆"

𝑆,𝑆-

𝑆#

Term 1

Term 1

Term 1

Term 1Term 2

22 Guest lecture: Introduction to Consensus Algorithms

Term 1

𝑆! 𝑆" 𝑆# 𝑆$ 𝑆%

∅
Majority vote? Yes J

Term 2

Term 2

Term 2



A problem: split votes in leader election

• Servers 𝑆# and 𝑆, both 
trigger timeouts and 
transition to candidate state

• 𝑆" votes for 𝑆# and will 
not vote for 𝑆,

• Similarly, 𝑆+ votes for 𝑆,
and will not vote for 𝑆#

• No candidate can 
collect majority vote

• Raft’s solution:
• Randomized timers
• Waiting for new elections

𝑆!

𝑆"

𝑆,𝑆-

𝑆#

Term 1

Term 1

Term 2

𝑆!

Term 2 Term 1

𝑆" 𝑆# 𝑆$ 𝑆%

∅ ∅ ∅

𝑆! 𝑆" 𝑆# 𝑆$ 𝑆%

∅ ∅ ∅

Majority vote? No L

Majority vote? No L

23 Guest lecture: Introduction to Consensus Algorithms

Term 2

Term 2



Raft’s server state transition

• Only a qualified server will be 
elected as a new leader

• Crashed servers will not be 
assigned with leader duty

• Slow servers will not be elected
CandidateFollower

Leader

Joins
Times out, new election

Discovers current 
leader or new term

Collects 
majority vote

Discovers server 
with higher term

Time

Term 1 Term 2 Term 3

Leader election Replication

• At most one leader can be elected 
as a leader in a given term

• Elected leader conducts 
consensus in its term

• Some terms may result in no 
leader being elected

24 Guest lecture: Introduction to Consensus Algorithms



Summary

• Raft operates in a succession of terms with two major components
• Leader election: the consensus to agree on a leader
• Replication: the consensus to agree on client requests

• Raft is fast and efficient
• It can tolerate up to 𝑓 + 1 benign failures among a total of 2𝑓 + 1 servers
• Under normal operation, it can achieve consensus by collecting replies 

from a majority of servers (𝑓 + 1 )
• Its leader election mechanism allows servers to proactively campaign for 

leadership, thereby avoiding unqualified servers to be elected

25 Guest lecture: Introduction to Consensus Algorithms



Additional resources
• This lecture does not cover all the details of Raft

• Check out the full paper at: https://raft.github.io/raft.pdf
• Raft’s visualization: https://raft.github.io/

• Solving Raft’s split vote problem:
• G. Zhang and H. -A. Jacobsen, "ESCAPE to Precaution against Leader Failures," 2022 IEEE 42nd 

International Conference on Distributed Computing Systems (ICDCS). 
https://ieeexplore.ieee.org/document/9912172

26 Guest lecture: Introduction to Consensus Algorithms

Learn more about consensus algorithms at:
https://gengruizhang.github.io/

MSRG Linkedin

https://raft.github.io/raft.pdf
https://raft.github.io/
https://ieeexplore.ieee.org/document/9912172
https://gengruizhang.github.io/

