
Fairness in Byzantine Consensus

Gengrui Zhang, PhD Candidate
University of Toronto

Seminar talk at

• The permissioned vs. permissionless
• Consensus protocols in the age of blockchains

• Tolerating benign failures
• Tolerating Byzantine failures

• State-of-the-art algorithms at a glance
• Our work:

• Suppressing Byzantine behavior
• Fairness in Byzantine consensus

Today’s Agenda

Scaling Byzantine Consensus © Gengrui Zhang Page 2

Permissionless
• Freely join or leave without

node management
• Open distributed ledger

• Bitcoin
• Ethereum

• Proof-of-X protocols
• Proof-of-Work
• Proof-of-Stake [OSDI '17]

Permissioned
• Join by permission, requiring

node management
• Shared distributed database

• HyperLedger (IBM)
• Libra (Facebook)

• BFT consensus
• PBFT [OSDI '99]

• Zyzzyva [SOSP '07]

• HotStuff [PODC '19]

• Pompē [OSDI '20]

Categorizing blockchains based on consensus

Scaling Byzantine Consensus ©
Gengrui Zhang

Page 3

• Proof-of-Work (PoW)
• Hard to solve, but easy to verify

The Proof-of-X family

Nonce
XXX…XXX
Block number

#...
Previous block

#...
Transactions:

txn #...
txn #...
txn #...

0000X…XX ?
Prefix 𝑥 = 4 zeros?

disseminate
block

Hash
No

• PoW is a brutal-force hashing algorithm
• Participants can remain anonymous
• Longest-chain rule
• Reduce the work

• Proof-of-Stake: e.g, Algorand [OSDI '17]

Yes

Scaling Byzantine Consensus © Gengrui Zhang Page 4

• Benign failures
• Crash failures
• Omission failures

• Send omission
• Receive omission

• Timing failures

• Byzantine failures
• Arbitrary failures
• Malicious attacks

Failure model
A B

A B

A B

A B

𝑣 → 𝑢

𝑣

timeout

𝑣

A
𝐵'

𝑣

𝐵(
𝑣 → 𝑤

Scaling Byzantine Consensus © Gengrui Zhang Page 5

• Benign failures
• Paxos

• Viewstamped
replication [PODC '88]

• Raft [ATC '13]

• Byzantine failures
• PBFT [OSDI '99]

• Zyzzyva [SOSP '07]

• BFT-SMaRt [ATC '13]

• HotStuff [PODC '19]

• Pompē [OSDI '20]

Consensus in the presence of failures

Quorum: 2𝑓 + 1
Simple majority

Quorum: 3𝑓 + 1
Byzantine agreement
Byzantine broadcast

http://www.lamport.org
e.g., Latex, logical clock,
Byzantine general problems

Scaling Byzantine Consensus © Gengrui Zhang Page 6

http://www.lamport.org/

The celebrated PBFT

R1

R2

R3 (faulty)

request

Primary

Client
pre-prepare prepare commit reply

o A client sends a request to invoke a service operation to the primary
o The primary multicasts the request to the backups
o Replicas execute the request and send a reply to the client
o The client waits for 𝑓 + 1 replies from different replicas with the

same results

Scaling Byzantine Consensus © Gengrui Zhang Page 7

Lower bound of 3𝑓 + 1
Consider a simple 2PC process tolerating 𝑓 Byzantine failures

…

…

ℛ) = 𝑓

ℛ* = 𝑓

…

…

ℛ) = 𝑓

ℛ* = 𝑓

ℛ) ∪ ℛ* ∪ 𝐿
= 2𝑓 + 1

ℛ* ∪ 𝐿 = 𝑓 + 1

…

…

ℛ) = 𝑓

ℛ* = 𝑓

… ℛ+ = 𝑓

𝓡𝒃 ∪𝓡𝒄 ∪ 𝑳
= 𝟐𝒇 + 𝟏

𝐿

Scaling Byzantine Consensus © Gengrui Zhang Page 8

Along with blossomed blockchain applications, numerous
BFT consensus have been designed and deployed

BFT consensus for permissioned blockchains

BFT algorithms Normal
operation Leader failure 𝑓 Leader

failure

PBFT (OSDI ’99) 𝑂(𝑛-|𝑀|) 𝑂(𝑛.) 𝑂(𝑓𝑛.)

Zyzzyva (SOSP ’07) 𝑂 𝑛|𝑀| ∗ 𝑂(𝑛.) 𝑂(𝑓𝑛.)

BFT-SMaRt (ATC ’13) 𝑂(𝑛-|𝑀|) 𝑂(𝑛.) 𝑂(𝑓𝑛.)

SBFT (DSN ’19) 𝑂(𝑛|𝑀|) 𝑂(𝑛-) 𝑂(𝑓𝑛-)

HotStuff (PODC ’19) 𝑂(𝑛|𝑀|) 𝑂(𝑛) 𝑂(𝑓𝑛)

*only in optimal path

Scaling Byzantine Consensus © Gengrui Zhang Page 9

• Always leaves a window for
correct servers to take the
leader duty

So, what next?

fair, simple

Round-robin leader selections: 𝒫 = 𝑣𝑖𝑒𝑤 𝑚𝑜𝑑 |ℛ|

𝑃𝑟 of unavailable leaders:

𝑃𝑟 =
𝑓
|ℛ|

≈ 20%

• Faulty servers have the chance
to be assigned as next leader

, and painful

𝑆#

𝑆$

𝑆%

𝑆&

𝑆'

Faulty

Scaling Byzantine Consensus © Gengrui Zhang Page 10

Is fairness the ultimate option for selecting leaders?

𝑆#

𝑆$

𝑆%

𝑆&

𝑆'

Faulty

Desired leadership
locations

Penalize suspicious servers by
detecting faulty behaviors,

thereby pushing leader duty to
correct servers

Question arises:
How can we design efficient BFT
algorithms that not only tolerate

Byzantine failures, but also
alleviate systems from being

impaired by failures to
enhance availability?

Scaling Byzantine Consensus © Gengrui Zhang Page 11

• The more zeros a result prefixes, the more iterations the
hashing process requires

• Cost of hash computation can be dynamically adjusted by
changing thresholds

• Utilizing PoW as a tool to discourage misbehaved servers
can marginalize Byzantine servers out of participating
consensus

Leveraging PoW into BFT consensus

Nonce
XXX…XXX

Block
…

0000X…XX ?
Prefix 4 zeros?

disseminate
block

Hash
No

Yes

𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 = 𝟒

Scaling Byzantine Consensus © Gengrui Zhang Page 12

The Proof-of-Commit leader election

Candidate

Leader

Follower

receives votes from
all correct servers

other leader elected
with higher term

timer expires,
new election

timer expires,
new election

finds leader with
higher term

Hash
Computation

nonce found

• Becoming a leader engages performing computation
• The more election initiated, the more time-consuming the

computation will be (penalization!)

Scaling Byzantine Consensus © Gengrui Zhang Page 13

Linear message transmission in log replication

+ 𝜖
𝓋!: ∅

𝓋": 𝑖-1

𝓋": 𝑖−1

𝓋!: 𝑖

𝓋!: ∅

𝓋(!): 𝑖

𝓋(!): 𝑖

𝓋(!): 𝑖

𝓋(!): 𝑖

𝓋(!): 𝑖

𝑣!% :	𝑑ℝ𝑣!% :	𝑑ℝ

𝓋": ⊥

𝑣!% :	𝑑ℝ

𝓋!: ∅ 𝑣!% :	𝑑ℝ

𝒞%

ℒ

ℱ%

ℱ'

…

Propose Value Serialize Logs Collect Replies Local Commit Announcement

𝑣!% :	𝑑ℝ

𝑝𝑟𝑜𝑝𝑜(! 𝑠𝑒𝑟𝑙𝑜𝑔) 𝑟𝑒𝑝𝑙𝑦*! 𝑙𝑜𝑐𝑚𝑡) 𝑎𝑛𝑛𝑜*!

• Utilizes leaders as a bridge for leader-followers
communication instead of using 𝑛 − 𝑡𝑜 − 𝑛 followers-to-
followers communication

• Holds properties of Byzantine agreement

• Reduce message delivery from 𝑂(𝑛-) to 𝑂(𝑛)

Scaling Byzantine Consensus © Gengrui Zhang Page 14

• Every server has a proposal timer to limit the time for a
proposal to be committed

• First, if the proposal timer keeps expiring, clients send
𝑐𝑙𝑖𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛 messages to connected servers

• Next, servers forward 𝑐𝑙𝑖𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛 to the leader and
broadcast 𝑠𝑒𝑐𝑜𝑛𝑑𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛 messages

• Then, upon receiving 𝑓 + 1 𝑠𝑒𝑐𝑜𝑛𝑑𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑡 messages,
a server starts to count down its election timer.

• If the proposal is committed within election timeout,
server resets election timer

• If election timer expires, the server considers leader is
faulty and starts its leader election campaign

Compliant-based client interaction

Scaling Byzantine Consensus © Gengrui Zhang Page 15

• Suppose Byzantine servers as a cohort have a
computation ability, 𝛿,

• Before Byzantine servers exhaust 𝛿, correct leaders
may appear in between attacks

• After Byzantine servers exhaust 𝛿, Proof-of-Commit
leader election guarantees correct leaders.

• After difficulty exceeds 𝛿, Byzantine servers will vanish
into repeatedly performing demanded computation,
converging systems to failure-free operations

Suppressing Byzantine servers

Scaling Byzantine Consensus © Gengrui Zhang Page 16

• When threshold < 5, election time differs by a narrow margin

• When threshold > 5, election time soars, and when threshold
> 7, election time goes skyrocketing

Preliminary results in PoC leader election

vCluster of 16
servers

v1,000 independent
runs under varying
thresholds

Scaling Byzantine Consensus © Gengrui Zhang Page 17

48 16 32 64 128
103

104

105

106

⇤⇤ ⇤ ⇤ ⇤ ⇤
⇤⇤ ⇤ ⇤ ⇤ ⇤
⇤⇤

⇤ ⇤ ⇤ ⇤

⇤
⇤ ⇤ ⇤ ⇤ ⇤⇤⇤ ⇤ ⇤ ⇤ ⇤

⇤
⇤ ⇤ ⇤ ⇤ ⇤

⇤
⇤

⇤

⇤
⇤

⇤

⇥
⇥

⇥
⇥

⇥

⇥

Cluster sizes

Le
ad

er
el

ec
tio

n
tim

e
(m

s)

⇤ Limen=1 ⇤ Limen=2 ⇤ Limen=3 ⇤ Limen=4
⇤ Limen=5 ⇤ Limen=6 ⇤ Limen=7 ⇥ Limen=8

Figure 6: The leader election time of PoPC leader election
with increasing limens at various cluster scales.

code, and we will publish the source code2. The experiments
primarily evaluate the leader election time under malicious
attacks on 4, 8, 16, 32, 64, and 128 VM instances distributed
on Compute Canada cloud. Each instance contains two 2.40
GHz Intel Core processor (Broadwell) CPUs with a cache
size of 16 MB, 7.5 GB RAM, and 56 GB disk running on
Ubuntu 18.04.5 LTS, with network latency around 15ms.

5.2 Leader election

The leader election time was measured in PoPCorn clusters
consisting of 4, 8, 16, 32, 64, and 128 servers as shown in Fig-
ure 6. Generally, when limen<6, the election time increases
slightly along with the increment of limens and the scales of
the cluster. The reason is that voting accounts for more time
than hash computations in the leader election time. However,
the election time soars when limen>6, the leader appears af-
ter more than 4 minutes in a 4-server cluster. Interestingly,
when the system scales up, the election time decreases by a
large margin. In this case, because hash computation becomes
time-consuming, with more servers computing a nonce, the
probability to obtain a qualified nonce increases.

5.3 Vanishing Byzantine servers

We measured the time cost for takeover attacks by cohorts
of Byzantine servers and the associated recovery time in a
16-server PoPCorn system. Each server has the same config-
uration of system setup, which means every server has the
same computation ability, g. In a 16-server system, PoPCorn
tolerates up to 5 faulty servers, so we evaluated the attacks
from three Byzantine cohorts consisting of 1, 3, and 5 servers.

2Source code retained to preserve anonymity during the review process.

1 2 3 4 5 6 7 8 9
101

103

105

107

⇤

⇤
⇤

⇤
⇤

⇤

⇤

⇤

⇤

�
� � � � � � � �

⇥

⇥
⇥

⇥
⇥

⇥

⇥

⇥

⇥

⌦
⌦ ⌦ ⌦ ⌦ ⌦ ⌦ ⌦ ⌦

�

�
�

�
�

�

�

�

�

�
� � � � � � � �

Takeover attacks

Ti
m

e
co

st
(m

s)

⇤ Cohort f=1 � Recovery f=1
⇥ Cohort f=3 ⌦ Recovery f=3
� Cohort f=5 � Recovery f=5

Figure 7: The total time cost of Byzantine servers launching
takeover attacks and associated system recovery time in a
PoPCorn cluster of 16 servers.

Byzantine cohorts follow Strategy 1 to perform takeover at-
tacks, and the time costs of each attack and recovery are ac-
cumulated. That is, the n-th attack happens when the system
recovers from the n�1 th attack.

In the beginning of attacks, Byzantine servers encounter
hash computations with smaller limens so that takeovers can
be repeated quickly. From Figure 7, all the three cohorts of
Byzantine servers can perform 6 attacks within 1 second, but
the time of hash computation with increasing limens grows
exponentially. It takes hours to perform the 9-th takeover at-
tack for a single Byzantine server, and cohorts of Byzantine
servers only defer the increase by a constant factor. On the
other hand, the recovery time grows linearly. Servers need
to wait for timeouts to start leader elections, and limens for
servers that initiate no election remain unchanged. The in-
crease of recovery time is majorly contributed by the growing
number of timeouts. Since Byzantine servers launch the n-th
attack after the system recovers from the n�1 attack, the n-th
recovery adds up all the previous timeout periods. In this case,
g for Byzantine servers can be considered as exhausted after
they perform 9 takeover attacks, and Byzantine servers are
vanished from future leader elections.

5.4 Leader availability after g
After Byzantine servers exhaust g, PoPCorn becomes more
available to provide services. Faulty servers have to accu-
mulate credits and cannot perform any attacks. Round-robin
leader rotations (RRLR) are widely adopted in BFT algo-
rithms [1] since the randomness leaves a window of correct
servers becoming leaders. HotStuff [53] and LibraBFT [3]
rotate leadership after committing every transaction; we name
this method as HotRRLR and compare its leader availability
with PoPCorn. To fairly measure leader availability, timeout

10

Byzantine attacks and recovery

In a 16-server cluster, where
𝑓0)1 = 5
• Timeout is set to 1s
• Strategy for Byzantine

servers:
• Take over the leadership

whenever they are not
leaders

• Strategy for correct servers:
• Follow timing requirement;

initiate new elections
based on timeouts

Scaling Byzantine Consensus © Gengrui Zhang Page 18

• Penalty can only be imposed based on suspicion [FLP]
• Ambiguity could lead to false penalization

• Applying PoW may threaten system liveness
• Byzantine servers with omnipotent computation power

(in theory)
• Byzantine servers pretend to be correct
• Correct servers may compete for leadership

Lessons learned

Scaling Byzantine Consensus © Gengrui Zhang Page 19

Thank you! Questions?

Gengrui Zhang (张耕瑞)
gengrui.zhang@mail.utoronto.ca

Scaling Byzantine Consensus © Gengrui Zhang Page 20

