Fairness in Byzantine Consensus

Gengrui Zhang, PhD Candidate
University of Toronto

UNIVERSITY OF

% TORONTO

Seminar talk at | & 71 N =

UNIVERSIDADE DE MACAU

oday’s Agenda

* The permissioned vs. permissionless
« Consensus protocols in the age of blockchains
 Tolerating benign failures
 Tolerating Byzantine failures
« State-of-the-art algorithms at a glance
« Our work:
« Suppressing Byzantine behavior
» Fairness in Byzantine consensus

T @

IIIIIIIIIIII

-
& TORONTO

Categorizing blockchains based on consensus

Permissionless Permissioned
* Freely join or leave without < Join by permission, requiring
node management node management
« Open distributed ledger « Shared distributed database
* Bitcoin « HyperLedger (IBM)
« Ethereum e Libra (Facebook)
* Proof-of-X protocols BFT consensus
 Proof-of-Work « PBFT
* Proof-of-Stake « Zyzzyva
* HotStuff
 Pompé

T @

IIIIIIIIIIII

-
& TORONTO

he Proof-of-X family

 Proof-of-Work (PoW)
« Hard to solve, but easy to verify

Nonce € No
XXX... XXX
Block number Hash |0000X...XX ? Yesa disseminate
#... Prefix x = 4 zeros? block
Previous block
#... PoW is a brutal-force hashing algorithm
Tratn?]a;tlons: Participants can remain anonymous
xn #...
txn #._ » Longest-chain rule
txn #... * Reduce the work

* Proof-of-Stake: e.g, Algorand [osbi 7]

@
@ T‘gﬁgg%% Scaling Byzantine Consensus © Gengrui Zhang Page 4

Failure model

» Benign failures

()
. 1Y
* Crash failures ®—>

* Omission failures

« Send omission
« Receive omission

* Timing failures

timeout
« Byzantine failures d

* Arbitrary failures
 Malicious attacks

mJ UNIVERSITY OF

@ TORONTO Scaling Byzantine Consensus © Gengrui Zhang Page 5

Consensus in the presence of failures

» Benign failures
* Paxos

* Viewstamped
replication [pobc 'ss;
o Raft atc 13

Quorum: 2f + 1
Simple majority

i

l o, i

I 01 8
l

\

1

i

: : http://www.lamport.org
* Byzantine failures e.g., Latex, logical clock,

 PBFT [OSDI '99] Byzantine general problems
» Zyzzyva [SOSP '07] Quorum: 3f + 1

« BFT-SMaRt atc 13 Byzantine agreement

* HotStuff (pooc 19 Byzantine broadcast
* Pompé [osbi 20]

IIIIIIIIIIII

&, TORONTO Scaling Byzantine Consensus © Gengrui Zhang Page 6

http://www.lamport.org/

he celebrated PBFT

. request | pre-prepare, prepare ; commit ; reply
Client

| \I] | /
Primary :
R ' ¥ ,Ag'
- NNIRKERKS
l

NZS =S

A client sends a request to invoke a service operation to the primary
The primary multicasts the request to the backups
Replicas execute the request and send a reply to the client

The client waits for f + 1 replies from different replicas with the
same results

R3 (fauly

O O O O

IIIIIIIIIIII

&, TORONTO Scaling Byzantine Consensus © Gengrui Zhang Page 7

Lower bound of 3f + 1

Consider a simple 2PC process tolerating f Byzantlne failures

O ' On
Lo 4| = Lo YR, = IETE I|72a|=f
;O;}'R gk o)
DL i Q)
L~ [Rp UR, ULl 1 X
EQ}|R,,|= =2/+t1 §9}|Rb|=f
O O- O
7o A ES%M

IIIIIIIIIIII . . ; L A @ (o . N
@ TORONTO Scaling Byzantine Consensus © Gengrui Zhang Page 8

BFT consensus for permissioned blockchains

Along with blossomed blockchain applications, numerous
BFT consensus have been designed and deployed

BFT algorithms O';ggt‘f‘o'n Leader failure |/ ~529°f
PBFT (ospi '99) 0(n?*|M)) 0(n3) 0(fn3)
Zyzzyva (sosp 07) O(n|M|)* 0(n3) 0(fn3)

BFT-SMaRt (atc*13) | O(n?|M)) 0(n3) 0(fn3)
SBFT (psn *19) 0(n|M)) 0(n?) 0(fn?)
HotStuff (Popc '19) O(n|M|) O(n) O(fn)

*only in optimal path

4
= TglﬁgIﬁ%FO Scaling Byzantine Consensus © Gengrui Zhang Page 9

So, what next?

Round-robin leader selections: P = view mod |R|

» Always leaves a window for
~~~~~~~~~~~~~ correct servers to take the
" leader duty

@ @ fair, simple , and painful

 Faulty servers have the chance

Faulty to be assigned as next leader
@ @ Pr of unavailable leaders:
____________________ f
Pr=— = 20%
| R

g Tlglﬁglﬁ"ifo Scaling Byzantine Consensus © Gengrui Zhang Page 10



|s fairness the ultimate option for selecting leaders?

Desired leadership Question arises:
locations

How can we design efficient BFT
algorithms that not only tolerate
"""""""""""""" 7 Byzantine failures, but also
alleviate systems from being
impaired by failures to
enhance availability?

Faulty:,.:’: 4

Penalize suspicious servers by
@ @ detecting faulty behaviors,
___________________ thereby pushing leader duty to

correct servers

T @

IIIIIIIIIIII

& TORONTO



Leveraging PoW into BFT consensus

Nonce € NG
XXX... XXX 1] v
Block [ Hash || ‘OOOO}(...XX ?}A €S, disseminate
refix|4 zeros” block

threshold = 4

* The more zeros a result prefixes, the more iterations the
hashing process requires

« Cost of hash computation can be dynamically adjusted by
changing thresholds

 Utilizing PoW as a tool to discourage misbehaved servers
can marginalize Byzantine servers out of participating
CONSensus

T @

@ Ttglﬁgﬁ’ifo Scaling Byzantine Consensus © Gengrui Zhang Page 12



he Proof-of-Commit leader election

« Becoming a leader engages performing computation

 The more election initiated, the more time-consuming the
computation will be (penalization!)

other leader elected
with higher term

timer expires,

new election \nonce found
Hash
Computation

Candidate >

Follower

receives votes from
all correct servers
finds leader with
higher term

timer expires,
Leader
UNIVERSITY OF

new election
@ TORONTO Scaling Byzantine Consensus © Gengrui Zhang Page 13



Linear message transmission in log replication

Propose Value Serialize Logs Collect Replies Local Commit Announcement
c; | vko \ / viidg [
L vl vk &S AR " vl dg vk dg T
propoc\ serlog, replyy, locmt, annog,
Fi 4 vl:ii—1 vk 0 v v v tdR
F —| vl:l vk @ v v vi : dg

 Utilizes leaders as a bridge for leader-followers

communication instead of using n — to — n followers-to-
followers communication

« Holds properties of Byzantine agreement

- Reduce message delivery from 0(n?) to 0(n)

MJ UNIVERSITY OF

2;3:‘ TORONTO Scaling Byzantine Consensus © Gengrui Zhang

Page 14



Compliant-based client interaction

« Every server has a proposal timer to limit the time for a
proposal to be committed

* First, if the proposal timer keeps expiring, clients send
clientComplain messages to connected servers

* Next, servers forward clientComplain to the leader and
broadcast secondComplain messages

* Then, upon receiving f + 1 secondComplaint messages,
a server starts to count down its election timer.

* |f the proposal is committed within election timeout,
server resets election timer

« |f election timer expires, the server considers leader is
faulty and starts its leader election campaign

T @

IIIIIIIIIIII

& TORONTO



Suppressing Byzantine servers

« Suppose Byzantine servers as a cohort have a
computation ability, 6,

« Before Byzantine servers exhaust §, correct leaders
may appear in between attacks

 After Byzantine servers exhaust §, Proof-of-Commit
leader election guarantees correct leaders.

« After difficulty exceeds §, Byzantine servers will vanish
into repeatedly performing demanded computation,
converging systems to failure-free operations

T @

IIIIIIIIIIII

& TORONTO



Preliminary results in PoC leader election

o o o
IS o ©

cumulative percent

o
N

1.0
61 1 TH=1
TH=2
4 1 TH=3
1 TH=4
| 1 TH=5
: 1 TH=6
: TH=7

0.0 , ,

101

100 10! 102 103
Proof-of-Commit leader election time (

+*Cluster of 16
servers

++1,000 independent
runs under varying
thresholds

* When threshold < 5, election tlme differs by a narrow margin

 When threshold > 5, election time soars, and when threshold

> 7, election time goes skyrocketing

Tt Scaling Byzantine Consensus © Gengrui Zhang

& TORONTO

Page 17



Byzantine attacks and recovery

e e E——— - In a 16-server cluster, where
—H— Cohort f=1 Recovery f=1 fmax — 5

—&— Cohort f=3 Recovery f=3
 Timeout is setto 1s

—H— Cohort f=5 Recovery f=5

107

[
-
[@)

 Strategy for Byzantine
Servers:

: » Take over the leadership
whenever they are not
leaders

Time cost (ms)

p—
-
o8}

-« Strategy for correct servers:

Takeover attacks  Follow timing requirement;
Initiate new elections
based on timeouts

<

UNIVERSITY OF
]

2 TORONTO

L



Lessons learned

» Penalty can only be imposed based on suspicion [FLP]
« Ambiguity could lead to false penalization

* Applying PoW may threaten system liveness

« Byzantine servers with omnipotent computation power
(in theory)

* Byzantine servers pretend to be correct
» Correct servers may compete for leadership

T @

IIIIIIIIIIII

& TORONTO



Thank you! Questions?

Gengrui Zhang (44 #4 %)
gengrui.zhang@mail.utoronto.ca

= Ttglﬁglg’ifo Scaling Byzantine Consensus © Gengrui Zhang Page 20



