
Escape to Precaution against 
Leader Failures

Edward (Gengrui) Zhang and Hans-Arno Jacobsen
University of Toronto

ICDCS'22



Content

• Consensus and state machine replication

• Leader-based consensus algorithms at a glance

• Problem statements: split votes in leader election

• The Escape protocol – avoiding split votes with fast leader election

2



Consensus and state machine replication

• Consensus algorithms stand at the core of distributed systems
• Provide state machine replication (SMR) services
• Coordinate server actions to reach agreement
• Fault tolerance: Crash and Byzantine fault tolerance (CFT/ BFT)

SMR servicesClient

C
lie

nt
 in

te
rfa

ce

Invoke 

operation

Operation reply

𝑆!

𝑆"
𝑆#

𝑆$

𝑆%

𝑆&𝑆'

Safety
All non-faulty replicas agree on a 
total order for the execution of 
requests despite failures

Liveness
Clients eventually receive replies 
to their requests

3



Leader, leadership, and Raft
• Leader-based consensus algorithms have been widely 

developed and deployed
• Paxos, Viewstamped replication, and Raft

• Raft’s strong leadership: log entries only flow from the 
leader to other servers

• Heartbeats – periodic messaging shuttle
• Terms – integers representing logical time
• Three server roles: leader, follower, and candidate

• Raft operates in two phases
• Log replication when leader is correct
• Leader election when leader fails

1

1

1

1 1

𝑆" (𝑙𝑒𝑎𝑑𝑒𝑟)

𝑆#

𝑆$𝑆%

𝑆&

Reset timer

4



Leader election – when a leader falls
• Candidate starts a new leader election campaign

• Increments its term
• Broadcasts a leader election request
• Votes for itself
• Needs to collect a majority vote in current term

• A server grants a vote if
• Candidate’s log is at least as up-to-date as its log
• Candidate’s term is not less than its term
• It has not voted in the current term

1

1

1

1 1

𝑆"

𝑆#

𝑆$𝑆%

𝑆&

Timeout

2

5

2

22



Competition in Raft’s leader election
• Split votes: what if no one collects a majority 

vote?
• E.g., in a 5-server cluster, the leader is 

down with 4 servers remaining. Each of 
the two candidates collects only two votes 
(one from itself)

• Candidates need to wait for a new timeout

• Split votes significantly increase leader 
election time (no leader, no service)

1

2

1 1

𝑆"

𝑆#

𝑆$𝑆%

𝑆&
Timeout

2

Timeout

6

𝑆! 𝑆" 𝑆# 𝑆$ 𝑆% 𝑆! 𝑆" 𝑆# 𝑆$ 𝑆%



Impact of split votes

• Prolonged election time due to split votes

7

Less split votes
Increased tim

eout range

2800

80%

• 1000 runs in a 5-server cluster, 100-200ms 
network latency

• 80% of evaluation results are less than 
2800ms. I.e., 20% of the 1000 runs took 
more than 2800ms

• Expanding timeout range can mitigate split votes 
but does not always yield to best configuration

• Best configuration changes adaptively according 
to network conditions



Escape to precaution against leader failures
• Escape is a leader election protocol that addresses split votes using two key 

concepts to dynamically prioritize servers 
• Stochastic configurations assignment (SCA)

• Assigns each server a configuration contains a unique priority and a timeout value

• Probing patrol function (PPF)
• Rearranges server priorities based on their log responsiveness

• SCA and PPF work in concert to prepare a pool of candidates as “future 
leaders” with differently prioritized configurations

• Escape is a general-purpose leader election protocol (not restricted to Raft); 
it can be adopted by various election algorithms

8



Stochastic configurations assignment (SCA)

• Priority determines term 
growth

• Timeout impacts speed 
for leader failure detection

1𝑆"

1𝑆"'

𝜋𝒫! = +
𝒫": 1

𝑝𝑒𝑟𝑖𝑜𝑑": 190 𝑚𝑠
2

11

A configuration, 𝜋𝒫", contains:
• Unique priority (𝒫)) such that 𝒫) = 𝑖 (𝑠𝑒𝑟𝑣𝑒𝑟 𝐼𝐷 𝑜𝑓 𝑆))
• Timeout value (𝑝𝑒𝑟𝑖𝑜𝑑)) such that 𝑝𝑒𝑟𝑖𝑜𝑑) = 𝑏𝑎𝑠𝑒𝑇𝑖𝑚𝑒 + 𝑘(𝑛 − 𝒫))

E.g., 𝑏𝑎𝑠𝑒𝑇𝑖𝑚𝑒 = 100𝑚𝑠, 𝑘 = 10, 𝑛 = 10

𝜋𝒫!# = +
𝒫"': 10

𝑝𝑒𝑟𝑖𝑜𝑑"': 100 𝑚𝑠

9



Probing patrol function (PPF)
• In each heartbeat, a leader arranges configurations

• Collects old configurations and rearranges new 
configurations based on server log 
responsiveness

• Assigns logical clocks to new configurations, 
indicating the freshness of configurations

• Distributes a new configuration to other servers

• PPF can be decoupled from regular heartbeats
• E.g., less frequent rearrangement if network is 

more synchronous

10



Examples – higher log responsiveness, higher priorities 

11

𝑆% and 𝑆& possess higher 
priorities (𝒫% and 𝒫&) 

Higher priorities (𝒫% and 𝒫&) 
are distributed to more up-to-

date servers (𝑆# and 𝑆$)



Examples – stale configurations of crashed servers

12

𝑆# (with 𝒫%) and 𝑆% (with 𝒫#) 
crashed in the k-th heartbeat 

𝑆# recovers but its prior 
priority is assigned to a 
more stable server (𝑆&)

𝑆% is still crashed and its 
priority becomes stale



Design philosophy of leader election protocols

• All servers are created equal 
• Every server has an equal 

chance to be the next leader
• The candidate who collects 

votes faster (a majority vote) is 
more likely to be elected

• Leadership competition may take 
place when a leader fails

• Servers are born with priorities
• A higher-priority candidate is 

more likely to defeat its 
counterparts and win an 
election campaign

• A queue of future leaders is 
maintained; leadership competition 
is resolved before a leader fails

Raft Escape

13



Escape to leadership competition

Raft intends to rank competing 
candidates whose campaigns 
are in the same term

𝐶!

𝐶" 𝐶#

𝑖𝑛 𝑡𝑒𝑟𝑚 𝑘

𝐶!

𝐶"

𝐶#

𝑖𝑛 𝑡𝑒𝑟𝑚 𝑘

𝑖𝑛 𝑡𝑒𝑟𝑚 𝑘 + 𝛼

ESCAPE uses priority-based configuration 
assignments to distribute concurrent 
campaigns into different terms

14



Evaluation – election time under leader failures

• Prototypes deployed on 4, 8, 16, 32, 64 and 128 VMs
• Timeouts set to 1500-2000ms; network latency varies from 100-200ms
• Each curve shows the cumulative percentage of 1000 runs; 

• Escape converges leader election faster at all scales
• Compared with Raft, Escape shortens leader election time by 11.6% 

and 21.3% at sizes of 8 and 128 servers, respectively
15

80% of the 1000 runs 
are less than 1900ms. 
I.e., 20% of runs took 

more than 1900ms

Escape Raft Escape vs. Raft



Evaluation – election time under message loss

• Under higher message loss rates, 
configuration rearrangements become more 
effective as no stale candidate can possess 
high priorities

• In 10-server cluster, compared with Raft, 
Escape reduces election time by 9.6% and 
19% under Δ=10% and Δ=40%, respectively 

• In cluster of 100 servers, Escape reduces the 
leader election time by 21.4% and 49.3% 
when Δ=10% and Δ=40%, respectively• Z-Raft (Zookeeper variant)

• No rearrangement of configurations

16



Conclusions

• Escape fundamentally resolves split votes by dynamically prioritizing 
servers according to their log responsiveness

• A more up-to-date server receives a better configuration that leads it to 
run an undefeated leader election campaign

• A pool of differently prioritized candidates is prepared before a future 
leader election takes place

• Escape progressively reduces leader election time when the cluster scales 
up, and the improvement becomes more significant under message loss

17



Thank you for listening!

Gengrui (Edward) Zhang, PhD candidate

University of Toronto

More on https://gengruizhang.github.io/

18

https://gengruizhang.github.io/

