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• Consensus and state machine replication

• Leader-based consensus algorithms at a glance

• Problem statements: split votes in leader election

• The Escape protocol – avoiding split votes with fast leader election
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Consensus and state machine replication

• Consensus algorithms stand at the core of distributed systems
• Provide state machine replication (SMR) services
• Coordinate server actions to reach agreement
• Fault tolerance: Crash and Byzantine fault tolerance (CFT/ BFT)
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Safety
All non-faulty replicas agree on a 
total order for the execution of 
requests despite failures

Liveness
Clients eventually receive replies 
to their requests
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Leader, leadership, and Raft
• Leader-based consensus algorithms have been widely 

developed and deployed
• Paxos, Viewstamped replication, and Raft

• Raft’s strong leadership: log entries only flow from the 
leader to other servers

• Heartbeats – periodic messaging shuttle
• Terms – integers representing logical time
• Three server roles: leader, follower, and candidate

• Raft operates in two phases
• Log replication when leader is correct
• Leader election when leader fails
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Leader election – when a leader falls
• Candidate starts a new leader election campaign

• Increments its term
• Broadcasts a leader election request
• Votes for itself
• Needs to collect a majority vote in current term

• A server grants a vote if
• Candidate’s log is at least as up-to-date as its log
• Candidate’s term is not less than its term
• It has not voted in the current term
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Competition in Raft’s leader election
• Split votes: what if no one collects a majority 

vote?
• E.g., in a 5-server cluster, the leader is 

down with 4 servers remaining. Each of 
the two candidates collects only two votes 
(one from itself)

• Candidates need to wait for a new timeout

• Split votes significantly increase leader 
election time (no leader, no service)
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Impact of split votes

• Prolonged election time due to split votes
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Less split votes
Increased tim
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• 1000 runs in a 5-server cluster, 100-200ms 
network latency

• 80% of evaluation results are less than 
2800ms. I.e., 20% of the 1000 runs took 
more than 2800ms

• Expanding timeout range can mitigate split votes 
but does not always yield to best configuration

• Best configuration changes adaptively according 
to network conditions



Escape to precaution against leader failures
• Escape is a leader election protocol that addresses split votes using two key 

concepts to dynamically prioritize servers 
• Stochastic configurations assignment (SCA)

• Assigns each server a configuration contains a unique priority and a timeout value

• Probing patrol function (PPF)
• Rearranges server priorities based on their log responsiveness

• SCA and PPF work in concert to prepare a pool of candidates as “future 
leaders” with differently prioritized configurations

• Escape is a general-purpose leader election protocol (not restricted to Raft); 
it can be adopted by various election algorithms
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Stochastic configurations assignment (SCA)

• Priority determines term 
growth

• Timeout impacts speed 
for leader failure detection
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A configuration, 𝜋𝒫", contains:
• Unique priority (𝒫)) such that 𝒫) = 𝑖 (𝑠𝑒𝑟𝑣𝑒𝑟 𝐼𝐷 𝑜𝑓 𝑆))
• Timeout value (𝑝𝑒𝑟𝑖𝑜𝑑)) such that 𝑝𝑒𝑟𝑖𝑜𝑑) = 𝑏𝑎𝑠𝑒𝑇𝑖𝑚𝑒 + 𝑘(𝑛 − 𝒫))

E.g., 𝑏𝑎𝑠𝑒𝑇𝑖𝑚𝑒 = 100𝑚𝑠, 𝑘 = 10, 𝑛 = 10

𝜋𝒫!# = +
𝒫"': 10

𝑝𝑒𝑟𝑖𝑜𝑑"': 100 𝑚𝑠
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Probing patrol function (PPF)
• In each heartbeat, a leader arranges configurations

• Collects old configurations and rearranges new 
configurations based on server log 
responsiveness

• Assigns logical clocks to new configurations, 
indicating the freshness of configurations

• Distributes a new configuration to other servers

• PPF can be decoupled from regular heartbeats
• E.g., less frequent rearrangement if network is 

more synchronous
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Examples – higher log responsiveness, higher priorities 
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𝑆% and 𝑆& possess higher 
priorities (𝒫% and 𝒫&) 

Higher priorities (𝒫% and 𝒫&) 
are distributed to more up-to-

date servers (𝑆# and 𝑆$)



Examples – stale configurations of crashed servers
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𝑆# (with 𝒫%) and 𝑆% (with 𝒫#) 
crashed in the k-th heartbeat 

𝑆# recovers but its prior 
priority is assigned to a 
more stable server (𝑆&)

𝑆% is still crashed and its 
priority becomes stale



Design philosophy of leader election protocols

• All servers are created equal 
• Every server has an equal 

chance to be the next leader
• The candidate who collects 

votes faster (a majority vote) is 
more likely to be elected

• Leadership competition may take 
place when a leader fails

• Servers are born with priorities
• A higher-priority candidate is 

more likely to defeat its 
counterparts and win an 
election campaign

• A queue of future leaders is 
maintained; leadership competition 
is resolved before a leader fails

Raft Escape
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Escape to leadership competition

Raft intends to rank competing 
candidates whose campaigns 
are in the same term
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ESCAPE uses priority-based configuration 
assignments to distribute concurrent 
campaigns into different terms
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Evaluation – election time under leader failures

• Prototypes deployed on 4, 8, 16, 32, 64 and 128 VMs
• Timeouts set to 1500-2000ms; network latency varies from 100-200ms
• Each curve shows the cumulative percentage of 1000 runs; 

• Escape converges leader election faster at all scales
• Compared with Raft, Escape shortens leader election time by 11.6% 

and 21.3% at sizes of 8 and 128 servers, respectively
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80% of the 1000 runs 
are less than 1900ms. 
I.e., 20% of runs took 

more than 1900ms

Escape Raft Escape vs. Raft



Evaluation – election time under message loss

• Under higher message loss rates, 
configuration rearrangements become more 
effective as no stale candidate can possess 
high priorities

• In 10-server cluster, compared with Raft, 
Escape reduces election time by 9.6% and 
19% under Δ=10% and Δ=40%, respectively 

• In cluster of 100 servers, Escape reduces the 
leader election time by 21.4% and 49.3% 
when Δ=10% and Δ=40%, respectively• Z-Raft (Zookeeper variant)

• No rearrangement of configurations
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Conclusions

• Escape fundamentally resolves split votes by dynamically prioritizing 
servers according to their log responsiveness

• A more up-to-date server receives a better configuration that leads it to 
run an undefeated leader election campaign

• A pool of differently prioritized candidates is prepared before a future 
leader election takes place

• Escape progressively reduces leader election time when the cluster scales 
up, and the improvement becomes more significant under message loss
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Thank you for listening!

Gengrui (Edward) Zhang, PhD candidate

University of Toronto

More on https://gengruizhang.github.io/
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