
Prosecutor: An Efficient BFT Consensus Algorithm with
Behavior-aware Penalization Against Byzantine Attacks

Gengrui Zhang and Hans-Arno Jacobsen

Department of Electrical & Computer Engineering
University of Toronto

ACM Middleware 2021

Byzantine failures

Zhang & Jacobsen @Middleware'21 Page 2

Alice Bob

Crash

Omission

Timing

Byzantine failures

``you’re cute😍’’

``you’re not cute😡’’

Byzantine failures, a.k.a.,
arbitrary failures:

the new state of the faulty
server and the contents of

the messages sent are
completely unconstrained

Why tolerating Byzantine failures is important?

Zhang & Jacobsen @Middleware'21 Page 3

• Unreliable hardware
• Boeing 777[1][2]

• Space X Dragon[3]

• Growing software scales/bugs
and operator mistakes

• Cloudflare[4]

• Blockchain application
• Bitcoin
• Diem

1. M., Paulitsch; Driscoll, K. (9 January 2015). "Chapter 48:SAFEbus". In Zurawski, Richard
(ed.). Industrial Communication Technology Handbook, Second Edition. CRC Press. pp. 48–1–48–26.

2. Yeh, Y.C. (2001). "Safety critical avionics for the 777 primary flight controls system". 20th DASC. 20th
Digital Avionics Systems Conference (Cat. No.01CH37219). 1. pp. 1C2/1–1C2/11

3. ELC: SpaceX lessons learned, LWN.net, https://lwn.net/Articles/540368/
4. A Byzantine failure in the real world, https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/

Blockchains

Crash fault
tolerance

Byzantine
fault tolerance

https://books.google.com/books?id=ppzNBQAAQBAJ
https://lwn.net/Articles/540368/
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/

Replication in leader-based BFT protocols

leader

backup

backup

backup

Backups: <abort, agree, agree>

Consensus proceeds

abort

agree

agree

• Utilizing a leader increases efficiency
• Avoids conflicts
• Less message passing

• Quorum certificates
• Message authentication
• Lower bound: tolerating 𝑓 faults

out of a total 3𝑓 + 1 replicas
• PBFT (𝑂(𝑛!))
• SBFT and HotStuff (𝑂(𝑛))

Zhang & Jacobsen @Middleware'21 Page 4

Tolerating failures in leader-based BFT protocols

leader

backup

backup

backup

Backups: <abort, agree, agree>

Consensus proceeds

abort

agree

agree

leader

backup

backup

backup

Consensus stops! Need to
replace the faulty leader!

View change starts

commit a

commit b

commit c

Zhang & Jacobsen @Middleware'21 Page 5

Failures on backups & leaders

No problem! Go ahead!

Zhang & Jacobsen @Middleware'21 Page 6

Question:
Is there any way to mitigate the impact of leader failures?

• Failures on backups and leaders have completely different impact

• A correct leader and 𝑓 backup failures:

• Leader failures are more catastrophic
• Internally, no server manages consensus
• Externally, no server handles client requests
• The system cannot provide any service (out-of-service condition)

Prosecutor: Suppressing Byzantine servers

• Prosecutor aims to fortify the leader position
• Suspects leader failures as potential malicious attacks
• Penalizes suspected servers by imposing computation work
• Diminishes the probability of faulty servers becoming leaders
• Achieves consensus in linear messaging complexity

• Therefore, Byzantine servers pay the price for attacking the system, and
the system suppresses Byzantine servers over time

Zhang & Jacobsen @Middleware'21 Page 7

Terms and server state transitions
• Inspired by Raft [Ongaro et al., ATC’14],

Prosecutor adapts terms and server
state transitions.

• Terms are logical clocks

• Follower, candidate, and leader

• Election campaigns take place
when followers trigger timeouts

• A leader comes from the candidate
that has collected 2𝑓 + 1 votes in
the same term

Candidate

Leader

Follower

receives votes
from all correct servers

other leader elected
with higher term

𝒯𝒞! expires,
new election

𝒯ℱ!
expires,

new election

finds leader
with higher term

Hash
Computation

nonce
found

physical time

term 1 term 2consensus for
leader election

consensus for
committing
transactions

Zhang & Jacobsen @Middleware'21 Page 8

Transaction replication in normal operation

+ 𝜖

𝓋!: ∅

𝓋!: 𝑖

𝓋!: ∅

𝓋(!): 𝑖

𝓋(!): 𝑖

𝓋(!): 𝑖

𝓋(!): 𝑖

𝓋(!): 𝑖

𝑣!$:	𝑑ℝ𝑣!$:	𝑑ℝ

𝑣!$:	𝑑ℝ

𝓋!: ∅ 𝑣!$:	𝑑ℝ

𝒞$

ℒ

ℱ$

ℱ&

…

Propose Value Serialize Logs Collect Replies Local Commit Announcement

𝑣!$:	𝑑ℝ

𝑝𝑟𝑜𝑝𝑜'$ 𝑠𝑒𝑟𝑙𝑜𝑔(𝑟𝑒𝑝𝑙𝑦)$ 𝑙𝑜𝑐𝑚𝑡(𝑎𝑛𝑛𝑜)$

• Clients communicate with all servers (at least 2𝑓 + 1)

• Leader collects 2𝑓 + 1 replies and combines them using threshold signatures

• The replication scheme requires 3𝑓 + 1 servers to tolerate 𝑓 failures

Zhang & Jacobsen @Middleware'21 Page 9

Proof windows (PWs) – log consistency requirement

• PWs illustrate servers’ replication
status (how up-to-date they are)

• Consensus can be issued in parallel
• Some values committed on Si can

still be uncommitted on Sj

• But they must be logged on Sj
(quorum certificate)

• Validation of PWs treats log and
commit equally

31

32

PW with size = 3

Cmt.

1 4Log

4

5

starts from the first
uncommitted value

ends at the last
committed value

31

321 4 5

2Cmt.

Log

Zhang & Jacobsen @Middleware'21 Page 10

Proof-of-Commit leader election
Proof window

hashOfProofWindow (hpw) nonce+
hash

hash

Does the result
prefix XXX?

Yes

qualifiedHashResult (res)

No

Threshold: # of
identical bytes in the
prefix of hash result

• Similar to Proof-of-Work[Nakamoto, Bitcoin 2008],
hashing is a brutal-force process

• The higher the threshold is, the more
computation the server needs to perform

• Candidates broadcast VoteMe
messages to all the other servers

VoteMe = < 𝒕𝒆𝒓𝒎, 𝑰𝒅, 𝒉𝒑𝒘, 𝒓𝒆𝒔, 𝒏𝒐𝒏𝒄𝒆 >𝝈𝑺

Zhang & Jacobsen @Middleware'21 Page 11

Threshold-determined computation penalty

• Validation process takes O(1)
time only; computation puzzle is
hard to solve but easy to verify

• A grantVote indicates that
• Candidate is up-to-date
• Proof windows are identical
• Performed computations

meet corresponding
threshold penalty

VoteMe = < 𝒕𝒆𝒓𝒎, 𝑰𝒅, 𝒉𝒑𝒘, 𝒓𝒆𝒔, 𝒏𝒐𝒏𝒄𝒆 >𝝈𝑺

validate terms

validate
proof windows

validate
computations

𝒕𝒆𝒓𝒎

𝒉𝒑𝒘

𝑰𝒅, 𝒓𝒆𝒔, 𝒏𝒐𝒏𝒄𝒆

𝑮𝒓𝒂𝒏𝒕𝑽𝒐𝒕𝒆

No
reject

No
reject

No
reject

Zhang & Jacobsen @Middleware'21 Page 12

Demo: Threshold adjustment

S1

S2 S3

S4

1 1 1 1

𝑆! 𝑆" 𝑆# 𝑆$

1 2 1 1S2 invokes a
leader election

Difficulty

Thresholds

Difficulty
increases

Zhang & Jacobsen @Middleware'21 Page 13

Demo: Threshold adjustment

S1

S2 S3

S4

1 1 1 1

𝑆! 𝑆" 𝑆# 𝑆$

1 2 1 1

1 3 1 1S2 invokes a
leader election

again

Difficulty
increases

Zhang & Jacobsen @Middleware'21 Page 14

Demo: Threshold adjustment

S1

S2 S3

S4

1 1 1 1

𝑆! 𝑆" 𝑆# 𝑆$

1 2 1 1

1 3 1 1

1 2 1 1S2 conducted 𝑘
consensus processes

tx1 tx2 tx3

tx1 tx2 tx3

tx1 tx2 tx3

tx	k…

tx	k…

tx	k…

Difficulty
decreases

Zhang & Jacobsen @Middleware'21 Page 15

Leader election time under varying thresholds

Correct servers’
thresholds remain low

Byzantine servers’
thresholds increase

• Experiments conducted in a 16-
server cluster on Compute
Canada Cloud

• When threshold is less than 4,
computation times are less than
100ms

• When threshold exceeds 5, time
costs surge and diverge

• When threshold exceeds 7,
performing computation takes
hours

Zhang & Jacobsen @Middleware'21 Page 16

Election time of
20% of the runs is
below 1 second

Malicious attacks vs. system recovery
Attack time surges

exponentially because of
increasing computations

Recovery time grows
linearly due to multiple

failure detections

• The more attacks a server
has launched, the more
computation the server
needs to perform for
launching the next attack

• Time costs for system
recovery are subjected to
detecting faulty leaders
(multiple timeouts) along
with the number of attacks

Zhang & Jacobsen @Middleware'21 Page 17

Throughput under takeover attacks
• HotStuff rotates leadership in view

changes; it mitigates the impact of
faulty leaders but suffers from
sustained throughput deductions

• Prosecutor gradually penalizes
faulty servers and suppresses
Byzantine servers over time

• Byzantine servers vanish by
having to perform time- and
cost-consuming computations

Zhang & Jacobsen @Middleware'21 Page 18

Conclusions

• Inspired by Proof-of-Work and Raft leader election, Prosecutor establishes
a penalization-based election mechanism that imposes computation work
for leadership candidacy

• The amount of penalty (work) is determined by servers' past behavior
• The more takeover attacks a server mounted in the past, the higher the

penalty (i.e., the more computation work the server needs to bear)

• Byzantine servers vanish into performing computations after exhausting
their computation capability

Zhang & Jacobsen @Middleware'21 Page 19

Thank you! Questions?

Gengrui Zhang
Email: gengrui.zhang@mail.utoronto.ca

Website: gengruizhang.github.io

Zhang & Jacobsen @Middleware'21 Page 20

mailto:gengrui.zhang@mail.utoronto.ca
gengruizhang.github.io

