
Untangling Blockchain Consensus Protocols
from Blockchain 1.0 to 2.0

Gengrui Zhang

�
�����������������������������������	��������������
�������������������������������������

Motivatioin

Background

Design & Implementation

Evaluation

• Why do we need a blockchain?

• The consensus protocols: PoW,

PoS, Paxos, Raft, PBFT

• The problem with Paxos, Raft

• Dynasty and D-Chain

• Comparisons and Evaluation

Content

2/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Why do we need a blockchain?

Centralized System

A B

3/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Decentralized System

Blockchain as a service

��	��
��������	

�

���
����	����

���

�
��������	�

�

��������	�
�

A B

“�����
���������	������”

We do need a blockchain that …

5/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

(
)

Permissionless Permissioned

,

Proof-of-X

⇒ Proof-of-Work, PoW
⇒ Proof-of-Stake, PoS

Replicated State Machine, Repl.SM
Byzantine Fault Tolerance, BFT

⇒ Paxos ⇒	Raft
⇒ Practical Byzantine Fault Tolerance, PBFT

6/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Permissionless Blockchains
—Somehow named as Blockchain 1.0

Block Structure

Time stamp

Cryptography

Transactions

Protocols Validation

PoW PoS DPoS …

Bitcoin Litcoin Ripple …

Network Layer

Data Layer

Consensus Layer

Application Layer
Incentive Layer

7/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

�

�

�

�

�

������������
����

��������������
����

������������
��� ����
��� ����
��� ����

	������������
�������

Hash (SHA-256)

Whether
000X�XX ?

Y
Broadcast the block N

������
������

������

Validate

Validate

Validate

000X�XX:
The number of 0 determines the difficulty
and the time when the block is generated

�����������

���� ���� �����

��
�� ���
���� ���� �����

��
�� ���

�����������

Proof-of-Work, PoW
[1] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[J]. 2008.

8/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Block number
#...

Previous block
#...

Transactions:
txn #...
txn #...
txn #...

Random number
XXX…XXX

Hash (SHA-256)

Whether
000X�XX ?YBroadcast the block N

Replace to X
Proof-of- XProof−of−Work, PoW [#]

Proof−of−Stake, PoS [%]

Proof−of−Activity, PoA [&]

… Random number + Age
�

txn #...
txn #...

Reduce the “Work”

[2] King S, Nadal S. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake[J]. self-published paper, August, 2012, 19.

Protocols for Permissionless Blockchains

9/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Consensus Finality

ü If a correct node p appends block b to its copy of

the blockchain before appending block b’, then no

correct node q appends block b’ before b to its copy

of the blockchain.

b
bb’

b’

node p node q

[3] Vukolić M. The quest for scalable blockchain fabric: Proof-of-work vs. BFT
replication[C]//International Workshop on Open Problems in Network Security.
Springer, Cham, 2015: 112-125.

10/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Double-Spending / Chain-forks

(a) Consensus finality violation
resulting in a fork

(b) Eventually, one of the blocks must be
pruned by a conflict resolution rule
(e.g., Bitcoin’s longest chain rule).

[4] Eyal I, Gencer A E, Sirer E G, et al. Bitcoin-NG: A Scalable
Blockchain Protocol[C]//NSDI. 2016: 45-59.

11/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Features of Permissionless Blockchains

�&�$'��(%$'�
(+$ ����

��'��������
��

���(��&
����,���

��$�%#�$)#��&�
���,���

�"%�! �&�* ��'�

�

�

���+	��, ������,

† Open, entirely decentralized
† No Consensus finality
† Good Scalability
† Limited Throughput
† High Latency
† Waste Power
† Fault Tolerance ?
† No correctness proofs

Due to the design of Protocols
e.g. block size,
difficulty of proof

Due to multi-block confirmations

Useless calculations

Bitcoin
Applications: '()*+*,-

./0(11() 2/3*

45667*

Features [9:] :

12/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Permissioned Blockchain —Smart Contracts and Blockchain 2.0

Application

Consensus

Network

Transaction

Application

Consensus

Network

Transaction

Application

Consensus

Network

Transaction
TransactionBlockst 1

t 2

t 3

I. Chain structure
II. Encrypted data
III. Block header
IV. Logic time stamp
V. Signatures

Blocks

Blocks

Network
I. Communication protocols
II. Finite number of nodes
III. Node management
IV. Validation

�

�

� �

�

graphs

Consensus
I. State machine based protocols
II. Proof-Of-X based protocols
III. BFT based protocolsServers

+
+
+

++ +

Clients

Application

Consensus

Network

Transaction

• Smart Contract
• Cooperation
• …

13/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Permissioned Blockchain

Coordination and Agreement in
distributed system

Interactive consistency Consensus Byzantine generals

“decision vector” “arbitrary failures”“crash, omissions”

14/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

“ To reach consensus, every process !" begins in the

undecided state and proposes a single value #",
drawn from a set $ (& ∈ (∗). The processes

communicate with one another, exchanging values.

Each process then sets the value of a decision
variable, +". In doing so it enters the decided state, in

which it may no longer change +"(& ∈ (∗)”
——�Distributed Systems Concepts and Design�

��������
�����
�	�

,-

,.

��������
#- = !01233+

�����

��������
#4 = !01233+ ��������

#. = 56107

�������
+- = !01233+

�������
+4 = !01233+

,4

Consensus for three processesReplicated State Machine
Byzantine Fault Tolerance, BFT

Consensus problem

15/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Fault-tolerance

Crash

Omission

Byzantine

ÞPaxos:
How to choose a value?

ÞRaft:
How to replicate a log?

ÞPBFT:
How to guarantee the correctness

under Byzantine conditions?

stronger
assumption

stronger
assumption

16/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Leslie Lamport http://www.lamport.org

Lamport�s research contributions have laid
the foundations of the theory of distributed
systems.

• �Time, Clocks, and the Ordering of Events in
a Distributed System�, which received the
PODC Influential Paper Award in 2000,

• �How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs�,
which defined the notion of Sequential
consistency,

• �The Byzantine Generals' Problem�,
• �Distributed Snapshots: Determining Global

States of a Distributed System� and
• �The Part-Time Parliament�.

17/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

� The consensus algorithm manages a
replicated log containing state machine
commands from clients.

� The state machine process identical
sequences of commands from the logs,
so they produce the same outputs.

!"#$% &"'()*+,-("./ 0"1

Ensure Safety under non-Byzantine Conditions,
including network delays, partitions, and packet

loss, duplication, and reordering

Replicated State Machine

[5] Schneider F B. Implementing fault-tolerant
services using the state machine approach: A
tutorial[J]. ACM Computing Surveys (CSUR),

1990, 22(4): 299-319.

18/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Servers: Proposers, Acceptors

System model: Asynchronous, non-Byzantine.

Replicated state machine

S1

S2 S3

!"#$%& !"#$%'!"#$%(…

Paxos

[6] Lamport L. Time, clocks, and the ordering of events in a
distributed system[J]. Communications of the ACM, 1978,
21(7): 558-565.
[7] Lamport L. The part-time parliament[J]. ACM
Transactions on Computer Systems (TOCS), 1998, 16(2):
133-169.
[8] Lamport L. Paxos made simple[J]. ACM Sigact News,
2001, 32(4): 18-25.
[9] Lampson B. The ABCD's of Paxos[C]//PODC. 2001, 1: 13.

19/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

� Only a value that has been
proposed may be chosen.

� Only a single value is chosen, and

� A process never learns that a
value has been chosen unless it
actually has been.

The Safety requirements
for consensus are:

Safety & Liveness

The Liveness requirements
for consensus are:

� Some proposed value is
eventually chosen.

� If a value is chosen, servers
eventually learn about it.

20/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Proposers

&

Acceptors

-> Active: put forth particular values to be chosen.
-> Handle client requests.

-> Passive: respond to messages from proposers.
-> Responses represent votes that from consensus.
-> Store chosen value, state of the decision process.
-> Want to know which value was chosen.

Server

Proposal

-> Each server stores maxRound: the Largest Round Number it has
been so far.

-> To generate a new proposal number:
(1) Increment maxRound. (2) Concatenate with ServerId.

-> Proposers must persist maxRound on disk: must not reuse proposal
numbers after crash /restart.

Each proposal has a unique number (proposal number)
-> Higher number take a priority over lower numbers.
-> It must be possible for a proposer to chose a new proposal

number higher than anything it has seen/used before.

Proposal Number

Round Number

ServerId

21/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Putting the actions of the proposer and acceptor together, we see that the algorithm operates
in the following two phases.

Phase 2. (Accept Phase)
-> If the proposer receives a response to its prepare requests (numbered n) from a majority of
acceptors, then it sends an accept request to each of those acceptors for a proposal numbered n
with a value v, where v is the value of the highest-numbered proposal among the responses, or is
any value if the responses reported no proposals.
-> If an acceptor receives an accept request for a proposal numbered n, it accepts the proposal
unless it has already responded to a prepare request having a number greater than n.

Phase 1. (Prepare Phase)
-> A proposer selects a proposal number n and sends a prepare request with number n to a
majority of acceptors.
-> If an acceptor receives a prepare request with number n greater than that of any prepare
request to which it has already responded, then it responds to the request with a promise not to
accept any more proposals numbered less than n and with the highest-numbered proposal (if any)
that it has accepted.

22/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Proposers Acceptors
(1) Choose new proposal number n.

(2) Broadcast Prepare(n) to all servers. (3) Respond to Prepare(n):
-> If n > minProposal, then minProposal = n

-> Return (acceptedProposal, acceptedValue)(4) When responses received from majority,
if any acceptedValue returned, replace
value with acceptedValue for highest

acceptedProposal.

(5) Broadcast Accept(n, value) to all servers (6) Respond to Accept(n, value):
-> If n >= minProposal then

acceptedProposal = minProposal = n;
acceptedValue = value;
-> Return (minProposal)

Acceptors must record minProposal, acceptedProposal, and acceptedValue on stable storage (disk).

(7) When responses received from majority:
-> Any rejections (result > n) : go to (1)

-> Otherwise, value is chosen

23/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

S1

S2

S3

S4

S5

P 3.1

A 3.1 XP 3.1

P 3.1

A 3.1 X

A 3.1 X P 4.5

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

1. Pervious value already chosen

server ID

A 3 . 1 X

value

proposal number

* New proposer will find it and use it

24/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

S1

S2

S3

S4

S5

P 3.1

P 3.1

P 3.1 A 3.1 X P 4.5

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

2. Pervious value not chosen, but proposer sees it
• New proposer will use exiting value
• Both proposers can succeed

A 3.1 X

A 3.1 X
Both users succeed

and choose the
same value

Abandoned

25/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

S1

S2

S3

S4

S5

P 3.1

P 3.1

P 3.1

A 3.1 X

P 4.5

P 4.5

P 4.5 A 4.5 Y

A 4.5 Y

3. Pervious value not chosen, new proposer doesn’t see it
• New proposer chooses its own value
• Older proposal blocked

A 3.1 XNo pervious
value accepted

A 3.1 X A 4.5 Y

Abandoned

Eventually, Y
is chosen

26/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

S1

S2

S3

S4

S5

P 3.1

P 3.1

P 3.1

A 2.1 X

P 3.5

P 3.5

P 3.5

A 2.1 X

A 2.1 X

P 4.1

P 4.1

P 4.1 A 3.5 Y

A 3.5 Y

A 3.5 Y

P 5.5

P 5.5

P 5.5

A 4.1 X

A 4.1 X

A 4.1 X

Cutting off

Cutting off

Cutting offLivelock: Competing proposers can livelock

27/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Disadvantages in Basic Paxos

-> Competing proposers can Livelock.

-> Only proposer knows which value has been chosen.

-> If other servers want to know, must execute Paxos with their own proposal.

Hint:
=> one solution:

Randomized delay before
restarting. Give other proposers a

chance to finish choosing.

Anyone can be a proposer.
(Advantages/Disadvantages)

Handle the request with a leader.

Multi-Paxos, Raft , Zab

28/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Strong leader
Raft uses a stronger form of leadership than other consensus algorithm.

For example, log entries only flow from the leader to other servers. This
simplifies the management of the replicated log an makes Raft easier to understand.

Raft [10] Ongaro D, Ousterhout J K. In search of an understandable consensus
algorithm[C]//USENIX Annual Technical Conference. 2014: 305-319.

29/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

! => In normal operation there is exactly one leader and all of
the other servers are followers.

Server states:

Followers are passive: they
issue no requests on their own
but simply respond to requests
from leaders and candidates.

The candidate is used to elect a
new leader. (using RequestVote

RPC)

The leader handles all client
requests (using AppendEntries

RPC).

Server

Timer

initial time !"

- trigger a timeout
- Reset to the initial time

Considers there is no alive leader
and begins an election to choose a

new leader.

A server remains in follower state
as long as it receives valid RPCs

from a leader or candidate.

RequestVote RPC

AppendEntries RPC

Follower Candidate Leader

30/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Follower

Starts up

Candidate

Leader

Timer
1. increment current term.
2. vote for self.
3. Reset election timer
4. Send RequestVote RPCs

to all other servers

times out,
new election

receives votes from
majority of servers

discovers current
leader or new term

discovers server
with higher term

times out,
starts election

Timer

Leader election

A candidate continues in this state
until three things happens:
1. it wins the election.
2. another server establish itself as

leader,
3. a period of time goes by with no

winner.

31/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Leader

Follower f1

Follower f2

Follower f3

L

f1

f2

f3

Client
Client
Leader

f1 f2 f3

CommitIndex 1
received majority replies

LogIndex 1 1 1 1

Round k

entries = [1]

AppendEntries RPC

Log Replication

32/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Leader

Follower f1

Follower f2

Follower f3

L

f1

f2

f3

Client
Client
Leader

f1 f2 f3

CommitIndex 1

LogIndex 1 1 1 1

1 11

Round k Round k+1

entries = [1] entries = [⟘]

AppendEntries RPC

Log Replication

33/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Term

Terms are numbered with
consecutive integers.

term 1 term 2 term 3 term 4

election normal operation no emerging leader

In a system’s dimension

In a server’s dimension

term 1 t 2 t 3 t 6 t7t 5 t 14

discovers server
with higher term

receives another leader’s Append-
Entries RPC with a higher term

Time is divided into terms, and each term begins with an election. After a
successful election, a single leader manages the cluster until the end of the term.
Some elections fail, in which case the term ends without choosing a leader. The
transitions between terms may be observed at different times on different servers.

Uses randomized timeouts

Raft ensures that there is at
most one leader in a given term.

t8 t10 t12

34/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

[10] Howard H. ARC: analysis of Raft consensus[R]. University of Cambridge, Computer
Laboratory, 2014.
[11] Howard H, Schwarzkopf M, Madhavapeddy A, et al. Raft refloated: do we have
consensus?[J]. ACM SIGOPS Operating Systems Review, 2015, 49(1): 12-21.
[12] Woos D, Wilcox J R, Anton S, et al. Planning for change in a formal verification of the
Raft consensus protocol[C]//Proceedings of the 5th ACM SIGPLAN Conference on Certified
Programs and Proofs. ACM, 2016: 154-165.
[13] Wilcox J R, Woos D, Panchekha P, et al. Verdi: a framework for implementing and
formally verifying distributed systems[C]//ACM SIGPLAN Notices. ACM, 2015, 50(6): 357-
368.
[14] Evrard H, Lang F. Automatic distributed code generation from formal models of
asynchronous concurrent processes[C]//Parallel, Distributed and Network-Based Processing
(PDP), 2015 23rd Euromicro International Conference on. IEEE, 2015: 459-466.

Learn more on …

35/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

P1

P2 P3

1: V 1: V

P4

1: V
2: 1: V

3: 1: U

3: 1: W2: 1: V
4: 1: V 4: 1: V

P2 P3

1: W1: U

P4

1: V
2: 1: U

2: 1: U
4: 1: V 4: 1: V

3: 1: W

3: 1: W

P2 decides on majority(V, U, V) = V
P4 decides on majority(V, V, W) = V

P2, P4 decides on majority(V, U, W) = Ø
(no majority values exists)

(Commander) P1 (Commander)

=> Assume that processes can exhibit arbitrary failures.Byzantine Condition

36/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

f1

f2

f3

request

Leader

Client
pre-prepare prepare commit reply

• A client sends a request to invoke a service operation to the primary.
• The primary multicasts the request to the backups.
• Replicas execute the request and send a reply to the client.
• The client waits for f+1 replies from different replicas with the same results;

this is the result of the operation.

PBFT: tolerant Byzantine failures with 3f+1 nodes

37/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

[15] Lamport L, Shostak R, Pease M. The Byzantine generals problem[J]. ACM Transactions on
Programming Languages and Systems (TOPLAS), 1982, 4(3): 382-401.
[16] Schneider F B. Byzantine generals in action: Implementing fail-stop processors[J]. ACM
Transactions on Computer Systems (TOCS), 1984, 2(2): 145-154.
[17] Veronese G S, Correia M, Bessani A N, et al. Efficient byzantine fault-tolerance[J].
IEEE Transactions on Computers, 2013, 62(1): 16-30.
[18] Castro M, Liskov B. Practical Byzantine fault tolerance[C]//OSDI. 1999, 99: 173-186.
[19] Liu S, Viotti P, Cachin C, et al. XFT: Practical Fault Tolerance beyond Crashes[C]//OSDI.
2016: 485-500.
[20] Miller A, Xia Y, Croman K, et al. The honey badger of BFT protocols[C]//Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016:
31-42.

Learn more on …

38/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Some High-level Comparisons
Proof-Of-Work Repli. StateM. / BFT based protocols

Node identity
management Open, entirely decentralized Permissioned, nodes need to know IDs of

all other nodes

Consensus finality no yes

Throughput Limited (due to possible chain forks) Good (tens of thousands tps)

Scalability Excellent (like Bitcoin) Limited (not well explored)

Latency High latency
(due to multi-block confirmations)

Excellent
(effected by network latency)

Power consumption Poor (useless hash calculations) good

Network synchrony
assumptions Physical clock timestamps None for consensus safety

Correctness proofs no yes

39/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Performance and Scalability

Performance

Scalability

10k tps

100 tps

PBFT

20 nodes 1k nodes

XFT Parallel BFT
Optimistic BFT

Hybrid BFT

Randomized BFT

PoW
PoS

Bitcoin-NG

goal

40/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Committed

The leader can not guarantee that a majority cluster has committed
the entry before the !"##$%&'()*+ increases.

1

2

1

1

C
� � �

The safety limitations in Raft

Unsafe Condition

Committed

3

3

3

3

C
� � �

Guarantee real-time safety

41/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Design of Dynasty consensus protocol

o Guarantee real-time safety and

Liveness

o Increase throughput, decrease

latency

ü Two-Phase Commit

ü View-Change

[21] Zhang G, Xu C. An Efficient Consensus Protocol for Real-time Permissioned Blockchains
under non-Byzantine Condititons [C]//International Conference on Green, Pervasive, and
Cloud Computing. Springer, Cham, 2018

42/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

RPCs in Dynasty:
Propose RPC , RequestVote RPC, LogPhase RPC, CommitPhase RPC, Heartbeat RPC

!"#$"%&$ redirects clients to a new leader
when the elder leader crashes.

'"%(leader’s term

)*$"+,-.
/%"0 index of log entries immediately

proceeding new ones

1*'%&"2(4) entries need to commit

'"%(,-.
/%"0 term of the log entries with

6789:;<=>?@A

!"#$"%&$ redirects clients to a new leader
when the elder leader crashes.

'"%(leader’s term

)*$"+,-.
/%"0 index of log entries immediately

proceeding new ones

)*$"+B(', commit index of leader

=> Followers passively reply: {success, term}

(Notify) (LP Reply) (CP Reply)(Ticket) (HB Reply)

43/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

A majority cluster commits

Leader commits

Two-Phase Commit

44/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

• Decrease Latency

• Increase throughput

L

!"#$

F L

!"#$

F

!"#$

�
� !"#$

�
�

%& %&%' %'

DynastyRaft

45/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

• View-Change

View ! View !"

L

#$
%$

&"

crash
election

Guarantee Liveness:
A new leader must be chosen after a view T

46/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Case 1 => Two candidates with the same term

!"

!#

!$

!%

!&

L

F

F

F

F

�

TO C L

term 3

term 4

TO timeout of server

'.)*+,-./0 &123.4 1 from !$ 5*6-./0 &123.4 1(⊥)

TO C F
'.)*+,-./0 &123.4 1 from !&

47/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Case 2 => Two candidates with split votes

!"

!#

!$

!%

!&

L

F

F

F

F

�

TO C

term 3

term 4

TO timeout
TO

term 5

C

'.)*+,-./0 &123.4 1 5*6-./0 7123.4 1(⊥)

TO

TO
F

'.)*+,-./0 7123.4 1

L

48/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Case 3 => An election started by a slow node

!"

!#

!$

!%

!&

L

F

F

F

F

term 3

term 4

TO timeoutTO

'.)*+,-./0 &123.4 1

5*6-./0 %123.4 1(8)

(slow)

:;+-./0 &123.4 1<#(8)5*6-./0 %123.4 1<#(8)

C F

49/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Consensus Layer

Storage Layer

Query Layer

Storage Layer

Query Layer

Block 1
Null

Hash.B1
 𝛺𝛺1

Block 3

Leader Followers

Block 2
Hash.B1
Hash.B2

 𝛺𝛺2 Hash.B2
Hash.B3

Query

Propose
Consensus Layer

Client

Chain Consensus layer
Query layer

Implementation of D-Chain

50/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Threads

Service
thread

Peer
thread

Consensus
Handler

Log sync
thread

timer
threadInbound RPCs

Outbound RPCs

Configurations Query
thread

log Commit

Storage

51/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Applications

Blockchain framework
“Consensus Algorithm”,

“Data Structure”

Blockchain as a Service (BaaS)

Blockchain based Applications
(Used car trading model, Real estate

registration)

Digital Content
Protection

“Blockchain based”

52/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

v Measured throughput and latency on clusters of 4, 8, 12 and 16 nodes.

v Not considering any case of node failure.

v All the results are averaged over 10 independent runs.

Each server has an E5-2630 2.40GHz CPU, 64 GB RAM, 2 TB hard drive,

running on Ubuntu 14.04.1, and connected to the other servers via 1GB

switch.

Evaluation of D-Chain framework

53/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Measured tests on 4, 8, 12, 16 nodes.

Transactions per second

#node

(a) Transactions Committed

time	(second)

(b)
#	t
ra
ns
ac
tio
ns

#	t
ra
ns
ac
tio
ns
			 ×

10
0

TPS	with	warm-up	time TPS	without	warm-up	time

Latency

#node

ms

(c)

While the latency in different scales of the system increases
as expected, the number of committed transactions per

second stabilizes at a point within less than 8% difference
after a warming-up period

54/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Raft

† Reduce the additional costs of Byzantine broadcast.

† Improve the performance of throughput and latency in normal case.

Design a strong-leader based consensus protocol that tolerates Byzantine fault.

Log replication

Leader election

+ incorrect message from other servers.
(Safety)

+ continuously starting new elections.
(Liveness)

Future work

55/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

+ using signature and hash

Validate

L

f

<hash>L

Log replication

Waiting for timeout

L

f

<hash>L

Byzantine
leader

Byzantine
follower

L

During normal case

f f f

L

f f f

L

Commit phase

Log phase

<hash>f1

<hash>L
<hash>L<hash>L

<hash>f2 <hash>fn

< <hash>f1
, <hash>f2,… , <hash>fn >L

2f+1

56/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

+ using Proof-of-CommitIndex (PoCI)Leader election

f

Prevent the node from continuously
increasing the term valueX Guarantee the liveness

term 3

C

timeout

follower

candidate

Leader

starts

times out,
starts election

discovers leader

discovers a server with a higher term

elected by
majority

times out, restarts
election

term 4

Proof of current commit index. Hash code:
000klx49f….

Continuously increasing: term 5, 6 ..
0000g8xk3r….

00000p5cgx4kl….

Index + Nonce

57/58Untangling the Blockchain Consensus Protocols from
blockchain 1.0 to 2.0 © Gengrui Zhang

Thank you for listening!

Questions?

����������������������������	������������������������
������������������������
������������

